
Understanding Optimization in Deep Learning with Central Flows

Jeremy Cohen*
Carnegie Mellon and Flatiron Institute

jcohen@flatironinstitute.org

Alex Damian*
Princeton University

ad27@princeton.edu

Ameet Talwalkar
Carnegie Mellon University

J. Zico Kolter
Carnegie Mellon University

Jason D. Lee
Princeton University

Abstract

Traditional theories of optimization cannot describe the dynamics of optimization in deep learning, even in the
simple setting of deterministic training. The challenge is that optimizers typically operate in a complex, oscillatory
regime called the edge of stability. In this paper, we develop theory that can describe the dynamics of optimization
in this regime. Our key insight is that while the exact trajectory of an oscillatory optimizer may be challenging to
analyze, the time-averaged (i.e. smoothed) trajectory is often much more tractable. To analyze an optimizer, we
derive a differential equation called a central flow that characterizes this time-averaged trajectory. We empirically
show that these central flows can predict long-term optimization trajectories for generic neural networks with a high
degree of numerical accuracy. By interpreting these central flows, we are able to understand how gradient descent
makes progress even as the loss sometimes goes up; how adaptive optimizers “adapt” to the local loss landscape;
and how adaptive optimizers implicitly navigate towards regions where they can take larger steps. Our results
suggest that central flows can be a valuable theoretical tool for reasoning about optimization in deep learning.

1 Introduction

While there is a rich body of work on the theory of optimization, few works attempt to analyze optimization in “real”
deep learning settings. Instead, even works motivated by deep learning often rely on unrealistic assumptions such as
convexity, or restrict their analyses to simplified models. Practitioners cannot use such theories to reason directly
about their optimization problems. Our goal in this paper is to develop optimization theory that applies directly to
deep learning problems. This is a difficult task: prior research has shown that, even in the seemingly simple setting of
deterministic (i.e. full-batch) training, optimization typically operates in a complex, oscillatory regime called the edge
of stability (EOS) (Xing et al., 2018; Wu et al., 2018; Jastrzębski et al., 2019, 2020; Cohen et al., 2021, 2022). The
dynamics of optimization in this regime cannot be captured by traditional optimization theory.

0 500 1000 1500 2000
step

0.2

0.4

0.6

0.8

1.0

1.2

tra
in

 lo
ss

Gradient Descent on ResNet
= 2/200
= 2/150
= 2/100

central flows

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

2.5
Gradient Descent on Transformer

= 2/200
= 2/150
= 2/100

central flows

0 1000 2000 3000 4000 5000
step

0.2

0.4

0.6

0.8

1.0

1.2

1.4
RMSProp on Mamba

= 7e-06
= 1e-05
= 2e-05

central flows

Figure 1: Our theory accurately predicts long-term optimization trajectories of practical neural networks. We
hold our theory to the high standard of rendering accurate numerical predictions about the optimization of practical
(i.e. non-toy) neural networks. For example, this figure shows that our central flows can accurately predict the
time-averaged (smoothed) loss curves of gradient descent and RMSProp on various practical architectures.

*Equal contribution; author ordering determined by coin flip over a Zoom call (Kingma and Ba, 2015). Alex Damian is now at Harvard
and Jason D. Lee is now at U.C. Berkeley. This is the full version of a paper that was published at ICLR 2025.

1

Figure 2: The central flow models the time-averaged (smoothed) trajectory of the oscillatory optimizer. In this
representative cartoon, gradient descent (blue) takes an oscillatory path through weight space. The central flow (black)
is a smooth curve that characterizes this trajectory, whereas gradient flow (red) takes a different path. As illustrated in
the inset, an oscillatory optimizer can be visualized as moving through a “valley” while bouncing between the “valley
walls” (Xing et al., 2018; Cohen et al., 2021; Wen et al., 2025).

In this paper, we devise a methodology for analyzing these oscillatory deep learning dynamics. Our key insight is
that while the fine-grained trajectory of an oscillatory optimizer may be challenging to analyze, the time-averaged
(i.e. locally smoothed) trajectory is often much more tractable. To analyze an optimization algorithm, we derive a
differential equation called a central flow which explicitly captures this time-averaged trajectory (Figure 2). Being a
smooth curve, the central flow is a simpler object than the original oscillatory trajectory. Hence, by interpreting the
central flow, we can reason more easily about the original optimizer.

We start in Section 3 by analyzing gradient descent, the simplest optimizer. We first explain why traditional analyses
cannot capture the typical dynamics of gradient descent in deep learning, and we then present a new analysis that does
capture these dynamics. The product of this analysis is a central flow. We use this central flow to understand various
aspects of gradient descent’s behavior, such as how the train loss can behave non-monotonically over the short-term
while nevertheless decreasing over the long term. We then examine a simple adaptive optimizer in Section 4, before
turning to RMSProp (i.e. Adam without momentum) in Section 5. We show that much of the behavior of these
optimizers is actually implicit in their oscillatory dynamics, and we render such behaviors explicit via our central flow
analysis. In particular, our central flows reveal how these adaptive optimizers: (1) implicitly adapt their step size(s) to
the local curvature, and (2) implicitly steer towards lower-curvature regions where they can take larger steps.

We focus in this paper on the simple, idealized setting of deterministic (i.e. full-batch) training. However, we
emphasize that similar optimization dynamics have been observed in the practical stochastic setting (Jastrzębski et al.,
2019, 2020; Andreyev and Beneventano, 2024). We view our analysis of deterministic optimization as a necessary
stepping stone to a subsequent analysis of stochastic optimization.

While we derive each central flow using informal mathematical reasoning, we show that these flows can accurately
predict long-term optimization trajectories in a variety of deep learning settings — a high standard of empirical proof.
Thus, we believe that central flows hold promise as a framework for analyzing, reasoning about, and perhaps even
inventing, deep learning optimizers.

Our code can be found at: http://github.com/centralflows/centralflows, and a blog version of
this paper (with animated trajectories) can be found at http://centralflows.github.io.

2

http://github.com/centralflows/centralflows
http://centralflows.github.io

Table of Contents

1 Introduction 1

2 Related Work 4

3 Gradient Descent 5
3.1 The Dynamics of Gradient Descent . 5
3.2 Deriving the Gradient Descent Central Flow . 9
3.3 Understanding Gradient Descent via its Central Flow . 18

4 Scalar RMSProp 20
4.1 The Dynamics of Scalar RMSProp . 21
4.2 Deriving the Scalar RMSProp Central Flow . 21
4.3 Understanding Scalar RMSProp via its Central Flow . 22

5 RMSProp 25
5.1 The Dynamics of RMSProp . 25
5.2 Deriving the RMSProp Central Flow . 26
5.3 Understanding RMSProp via its Central Flow . 28

6 Experiments 32
6.1 Experimental Results . 32

7 Discussion 34
7.1 Modeling decisions . 34
7.2 Takeaways from our analysis . 34

8 Conclusion 35

A Central Flow Derivations 44
A.1 Preliminaries . 44
A.2 Gradient Descent . 48
A.3 Scalar RMSProp . 57
A.4 RMSProp . 62
A.5 General Class of Adaptive Preconditioned Methods . 70
A.6 Differential Complementarity Problems . 74
A.7 Continuous-time approximation to an EMA . 78
A.8 Miscellaneous math . 79

B Experimental Details 80
B.1 Implementation details . 80
B.2 Architecture details . 82
B.3 Dataset details . 83

C Miscellaneous 84
C.1 Implicit gradient regularization . 84
C.2 Failure mode: higher-order terms . 87

D Supplementary Figures 89

E Bulk Experimental Data 107
E.1 Gradient Descent . 108
E.2 Scalar RMSProp . 127
E.3 RMSProp . 146

3

2 Related Work

Edge of stability The dynamics of optimization in deep learning remain poorly understood, even in the seemingly
simple setting of deterministic (i.e. full-batch) training. Indeed, recent research showed that gradient descent on
neural networks typically operates in a regime termed the “edge of stability” (EOS) in which (1) the largest Hessian
eigenvalue equillibrates around the critical threshold 2/η, and (2) the algorithm oscillates along high-curvature
directions without diverging (Xing et al., 2018; Wu et al., 2018; Jastrzębski et al., 2019, 2020; Cohen et al., 2021).
These dynamics could not be explained by existing optimization theory, which led Cohen et al. (2021) to observe that
there was no explanation for how or why gradient descent can function properly in deep learning.

Subsequently, several studies sought to theoretically explain EOS dynamics. Some works rigorously analyzed EOS
dynamics on specific objective functions (Agarwala et al., 2023; Ahn et al., 2024; Chen and Bruna, 2023; Even et al.,
2024; Kreisler et al., 2023; Song and Yun, 2023; Li et al., 2022b; Wu et al., 2024; Zhu et al., 2023), while other works
(Arora et al., 2022; Lyu et al., 2022; Damian et al., 2023) gave generic analyses based on a local third-order Taylor
expansion of the loss, which is one order higher than is normally used in the theoretical analysis of gradient descent.
Similar arguments were first used by Blanc et al. (2019) to study implicit regularization in SGD. Our work is most
directly inspired by Damian et al. (2023), as their analysis applies to generic objective functions, and holds throughout
training, not just near convergence. However, whereas they analyze the fine-grained oscillatory dynamics, we argue
that analyzing the time-averaged dynamics is simpler, and is sufficient for most purposes.

Continuous-time models for optimization The standard continuous-time model for gradient descent is the gradient
flow. Barrett and Dherin (2021); Smith et al. (2021) argued that gradient descent is, instead, better approximated by a
modified gradient flow that is augmented with a penalty on the squared gradient norm. We find that on deep learning
objectives, this modified flow improves slightly over gradient flow in the stable regime, but fails in the edge of stability
regime, where most of the discrepancy between gradient descent and gradient flow originates (see Appendix C.1).
Rosca et al. (2023) proposed a flow that can model oscillations by using complex numbers. However, this flow still
cannot track the long-term trajectory of gradient descent in EOS regime.1

Many works propose to model the dynamics of stochastic optimizers using stochastic differential equations (SDEs) (Li
et al., 2017; Li et al., 2021, Malladi et al., 2022; Compagnoni et al., 2023, 2025). In the full batch limit, where SGD
reduces to gradient descent, these SDEs reduce to gradient flow, which is a poor approximation to gradient descent
at the edge of stability. Thus, these SDEs cannot be accurate in all hyperparameter regimes. Further, even when
these SDEs do well-approximate the real optimizer trajectory, the SDE trajectories are themselves oscillatory, and
accordingly can possess behaviors that are implicit in the oscillatory dynamics. Our central flows, by contrast, average
out the oscillations and render all such behaviors explicit. Developing an analogue of the central flow for stochastic
optimization is an interesting open question (see Section 7). While some works do aim to explicitly characterize the
time-averaged trajectory of SGD (Blanc et al., 2019; Damian et al., 2021; Li et al., 2022a), existing analyses only
apply in limiting regimes (e.g. η → 0), and only when the loss is already near zero.

Understanding adaptive optimizers Ma et al. (2022) observed that RMSProp and Adam oscillate, and Cohen
et al. (2022) showed that such dynamics can be viewed as an adaptive version of the edge of stability, a finding
which we will leverage. Khaled et al. (2023) and Mishkin et al. (2024) observed that on quadratic functions, certain
adaptive optimizers implicitly adapt their effective step size to the maximum stable step size; we show this holds
more generally, beyond quadratics. Experiments in Roulet et al. (2024) and Wang et al. (2024d) are explained by
the phenomenon we call “acceleration via regularization.” Many works have also conducted rigorous convergence
analyses of adaptive optimizers, generally focused on deriving rates of convergence to a global minimizer or stationary
point (Duchi et al., 2011; Reddi et al., 2018; Chen et al., 2019a,b; Zaheer et al., 2018; Zou et al., 2019; Défossez
et al., 2022; Li and Lin, 2024; Chen et al., 2022; Wang et al., 2024a; Yang et al., 2024; Guo et al., 2021; Shi et al.,
2021; Zhang et al., 2022; Crawshaw et al., 2022; Li et al., 2024; Wang et al., 2024b; Hong and Lin, 2024; Zhang
et al., 2025; Wang et al., 2024c; Hübler et al., 2024).

1Further, whereas their flow “runs through” each iterate of the oscillatory gradient descent trajectory, our central flow instead averages out
the oscillations to yield a smooth trajectory, which we believe is a more useful mathematical object (see Section 3.3).

4

3 Gradient Descent

The simplest first-order optimizer is deterministic gradient descent with a fixed learning rate η:

wt+1 = wt − η∇L(wt). (1)

Perhaps surprisingly, Cohen et al. (2021) showed that traditional optimization analyses cannot capture the typical
dynamics of gradient descent in deep learning. We now present a new analysis that does capture these dynamics.

• In Section 3.1, we describe the typical dynamics of gradient descent in deep learning, and we explain why these
oscillatory edge of stability dynamics cannot be captured by traditional optimization theory.

• In Section 3.2, we show that while the exact oscillatory trajectory may be hard to analyze, the time-averaged
trajectory is more tractable. We derive a central flow that characterizes this time-averaged trajectory.

• In Section 3.3 we use this central flow to understand the behavior of gradient descent. For example, we show
that while gradient descent’s loss curve is non-monotonic, it can be viewed as the superposition of the loss
along the central flow, plus a contribution from the oscillations. The central flow loss is a smoothly varying
quantity that monotonically decreases, and therefore constitutes a hidden progress metric for gradient descent.

Our analysis of gradient descent will set the stage for subsequent analyses of more complex optimizers.

3.1 The Dynamics of Gradient Descent

To understand the oscillatory dynamics of gradient descent in deep learning, it is instructive to first consider the case of
quadratic objective functions. On quadratic functions, gradient descent oscillates if the curvature (i.e. Hessian) is too
large relative to the learning rate. For example, consider a one-dimensional quadratic objective L(x) = 1

2Sx
2, which

has global curvature S. Under gradient descent with learning rate η, the iterates {xt} evolve via xt+1 = (1−ηS)xt. If
S exceeds the critical threshold 2/η, then (1− ηS) < −1, so the iterate xt flips signs and grows in magnitude at each
step, i.e. gradient descent oscillates with exponentially growing magnitude, as shown in Figure 3. More generally, on
a quadratic objective in multiple dimensions, the curvature is quantified by the Hessian matrix, and gradient descent
oscillates with exponentially growing magnitude along Hessian eigenvectors with eigenvalues exceeding 2/η.2

Of course, deep learning objectives L(w) are not globally quadratic. Still, at any point w in weight space, the objective
can be locally approximated by a quadratic Taylor expansion around w. The dynamics of gradient descent on this
quadratic are controlled by the largest eigenvalue of the Hessian H(w), which we call the sharpness S(w):

S(w) := λ1(H(w)). (2)

If the sharpness S(w) exceeds 2/η, then gradient descent on the quadratic Taylor approximation would oscillate with
exponentially growing magnitude along the top Hessian eigenvector(s). This argument suggests that gradient descent
cannot function properly in regions of weight space where the sharpness S(w) exceeds 2/η.

stable unstable

Figure 3: Gradient descent on a quadratic function. Consider gradient descent with learning rate η on a quadratic
function 1

2Sx
2, with sharpness S. If S > 2/η, gradient descent oscillates with exponentially growing magnitude.

2An exception is if the initial iterate has exactly zero alignment with these Hessian eigenvectors. However, this event has probability zero
under any typical random initialization.

5

(a) Expectation: gradient descent stays throughout
training inside the stable region (gray), the subset of
weight space where the sharpness is bounded by 2/η.

(b) Reality: gradient descent frequently exits the sta-
ble region, but dynamically steers itself back inside.

Figure 4: Why does gradient descent converge in deep learning? The reality (right) is dramatically different from
the picture suggested by traditional theory (left).

In light of this discussion, why does gradient descent converge in deep learning? The natural explanation is that the
sharpness remains below 2/η throughout training. In other words, if we define the “stable region” {w : S(w) ≤ 2/η}
as the subset of weight space where the sharpness is bounded by 2/η, then one might suppose that gradient descent
remains inside the stable region throughout training, as depicted in the cartoon Figure 4(a). This is the picture
suggested by traditional analyses of gradient descent.3

Yet, Cohen et al. (2021) observed a very different reality when training neural networks using gradient descent.
Figure 5 depicts a typical gradient descent trajectory, with important events annotated a - g . Initially, the sharpness
rises a .4 Indeed, it is a robust empirical phenomenon, dubbed progressive sharpening, that the sharpness tends to
rise when training neural networks.56 Soon enough, the sharpness rises past the critical threshold 2/η. Once this
happens, gradient descent begins to oscillate with growing magnitude along the top Hessian eigenvector,7 just as
one would predict from a quadratic Taylor approximation b . These oscillations grow large enough that the train
loss starts to go up rather than down c . Yet, gradient descent does not diverge. Instead, something odd happens:
as if “by magic,” the sharpness rapidly drops d . Indeed, it drops all the way below the critical threshold 2/η,
after which point the oscillations start to shrink in magnitude e , as one would expect from a new quadratic Taylor
approximation. The unexplained rapid drop in the sharpness has conveniently prevented gradient descent from
diverging.8 Similar dynamics recur throughout the rest of training: gradient descent oscillates without diverging along
the highest-curvature direction(s),9 as the sharpness stays dynamically regulated around the critical threshold 2/η f .
Meanwhile, the train loss decreases over the long run, but behaves non-monotonically over the short run g .

Intuitively, whereas the traditional theory implies that gradient descent remains inside the stable region throughout
training, as in Figure 4(a), in reality gradient descent is frequently exiting the stable region, but is somehow steering
itself back inside, as in Figure 4(b). Cohen et al. (2021) dubbed these dynamics edge of stability (EOS), and noted
that they could not be explained by traditional optimization theory.

3We are referring to analyses which assume L-smoothness, i.e. Lipschitzness of the gradient / boundedness of the Hessian spectral norm.
This assumption is usually stated as a global condition, but analyses generally only require it to hold locally, in the vicinity of the trajectory.

4Throughout this paper, we report the Hessian eigenvalues measured not at the iterates themselves, but rather at the second-order midpoints
between the iterates. This results in plots that are slightly cleaner, while retaining all essential features (see Appendix B.1).

5Progressive sharpening remains theoretically unexplained. Our goal in this paper is not to understand the origin of progressive sharpening
in deep learning, but rather to understand the dynamics of gradient descent on objective functions which may or may not possess this property.

6In the literature, progressive sharpening has also been called a “narrowing valley” (Liu et al., 2025a,b) and “lower loss as sharper” loss
landscape structure (Li et al., 2023; Bai et al., 2025).

7To compute “displacement along top Hessian eigenvector” for Figure 5, we let t0 be the first step of the figure (i.e. step 2990), we let u be
the top Hessian eigenvector computed at step t0, and we report uT (wt − wt0).

8This process is similar to the “catapult” phenomenon observed in Lewkowycz et al. (2020) at initialization. Indeed, the EOS dynamics
with one unstable eigenvalue resemble a sequential series of catapults. However, the dynamics with >1 unstable eigenvalues are more complex.

9As gradient descent oscillates along the high-curvature directions, it can be visualized as moving through a “valley” while bouncing
between the “walls” of the valley (Xing et al., 2018; Cohen et al., 2021; Wen et al., 2025).

6

a

b e
c

d

f

g

Zoom-in on start of EOS (steps 2990-3090)

Complete trajectory

Figure 5: A typical gradient descent trajectory in deep learning. We train a neural network using gradient
descent with step size η = 0.01. The top row shows the long-term trajectory, while the bottom row zooms in on a
particular time segment. (a) The sharpness rises, reaching the critical threshold 2/η around step 2900. (b) Once the
sharpness crosses the critical threshold 2/η, gradient descent oscillates with growing magnitude along the top Hessian
eigenvector. (c) These oscillations cause the train loss to go up rather than down. (d) However, gradient descent
does not diverge; instead, as if “by magic”, the sharpness decreases until falling below 2/η. (e) Once the sharpness
is below 2/η, the oscillations shrink. Throughout the rest of training: (f) the sharpness stays regulated around the
critical threshold 2/η and (g) the train loss behaves non-monotonically over short timescales, while decreasing over
long timescales. Details: the network is a Vision Transformer trained on a subset of CIFAR-10 using MSE loss.

Damian et al. (2023) showed that the key for understanding these surprising dynamics is to Taylor-expand the objective
to third order, which is one order higher than traditionally used in analyses of gradient descent. A third-order Taylor
expansion reveals the crucial ingredient missing from traditional optimization theory:

Oscillations along the top Hessian eigenvector automatically trigger reduction of the top Hessian eigenvalue.

Let us informally sketch this argument. Suppose that gradient de-
scent is oscillating around a reference point w, along the top Hessian
eigenvector u, with current magnitude x, so that (illustration on right):

w = w + xu. (3)

w

xu

w

Due to the oscillation, the optimizer follows the gradient at w rather than the gradient at w. How do the two relate? A
Taylor expansion of∇L around w yields:

∇L(w + xu) =

first term

∇L(w) +
second term

xH(w)u︸ ︷︷ ︸
=xS(w)u

+O(x2). (4)

7

Since u is an eigenvector of H(w) with eigenvalue S(w), we recognize the second term as xS(w)u. This term causes
a negative gradient step computed at w+xu to move in the−u direction. In other words, this term is causing gradient
descent to oscillate back and forth along the top Hessian eigenvector u, as predicted by the traditional theory. The
“magic” comes from the next term, which arises from third-order terms in the Taylor expansion of the loss:

∇L(w + xu) =

first term

∇L(w) +
second term

xS(w)u+

third term
1
2x

2∇w[u
TH(w)u]︸ ︷︷ ︸

=
1
2x

2∇S(w)

+O(x3). (5)

Since uTH(w)u = S(w), we recognize this term as 1
2x

2∇S(w), where ∇S is none other than the gradient of the
sharpness.10 Thus, a negative gradient step computed at w + xu implicitly takes a negative gradient step on the
sharpness with step size 1

2ηx
2. This is the key ingredient missing from the traditional theory. When gradient descent

exits the stable region, it oscillates along the top Hessian eigenvector, just as the traditional theory predicts; but what
the traditional theory fails to anticipate is that these oscillations in turn perform gradient descent on the sharpness,
thereby steering the trajectory back into the stable region automatically.

Note that traditional optimization theory fails to capture the basic causal structure of the optimization process:
gradient descent converges not because the sharpness is “already” small, but rather due to an automatic negative
feedback mechanism that keeps the sharpness small.

Damian et al. (2023) analyzed the EOS dynamics in the special case where only one Hessian eigenvalue has crossed
the critical threshold 2/η, as in steps ~2900-3600 in Figure 6. In this setting, the dynamics consist of consecutive
cycles in which: (1) the sharpness rises above 2/η; (2) this triggers growing oscillations along the top Hessian
eigenvector; (3) such oscillations reduce sharpness via eq. (5), pushing it below 2/η; (4) the oscillations consequently
shrink in magnitude.11 However, a more common situation is when multiple Hessian eigenvalues have reached 2/η,
as in steps ~3600-4100 in Figure 6. Here, gradient descent oscillates simultaneously along all the corresponding
eigenvectors,12 and these oscillations cause all such eigenvalues to remain dynamically regulated around 2/η.

Unfortunately, analyzing EOS dynamics in fine-grained detail is challenging (Damian et al., 2023). The difficulty
arises from the need to account for the mutual interactions between the oscillations and the curvature. Even in the

2600 2800 3000 3200 3400 3600 3800 4000
step

0.24

0.26

0.28

0.30

0.32

0.34 stable 1 unstable 2 unstable
train loss

2600 2800 3000 3200 3400 3600 3800 4000
step

0

50

100

150

200

250 stable 1 unstable 2 unstable
top 3 Hessian eigenvalues

eigenvalue 1
eigenvalue 2
eigenvalue 3

2600 2800 3000 3200 3400 3600 3800 4000
step

0.0

0.1

0.2

0.3

0.4

0.5 stable 1 unstable 2 unstable
gradient norm2 along top eigenvectors

eigenvector 1
eigenvector 2

Figure 6: Multiple Hessian eigenvalues can be at the edge of stability. From steps ~2900-3600, one Hessian
eigenvalue is at the edge of stability, and gradient descent oscillates along the top Hessian eigenvector. From steps
~3600-4100, two Hessian eigenvalues are at the edge of stability, and gradient descent oscillates simultaneously along
both the corresponding eigenvectors. The number of oscillating directions can be easily read off from the right plot,
which shows the squared norm of the gradient when projected onto each of the top 3 Hessian eigenvectors.

10Technically, equating ∇w[u
TH(w)u] = ∇wS(w) requires invoking Danskin’s theorem. This is made precise in Appendix A.8, Fact 1.

11Notice that the drop in the sharpness is rapid, yielding a sawtooth-like plot for the evolution of the sharpness. This is because the size of
the sharpness reduction effect is proportional to x2. When x is small, the sharpness-reduction effect is negligible, but when x grows larger, the
effect quickly becomes strong. See Damian et al. (2023) for a simplified ODE model of the joint dynamics between x and sharpness.

12With k > 1 unstable eigenvalues, the corresponding eigenvectors are not individually identifiable; instead, one should think of gradient
descent as oscillating within the k-dimensional eigenspace spanned by the k eigenvectors at the edge of stability.

8

0 2000 4000 6000 8000
step / time

0.15

0.20

0.25

0.30

0.35
train loss

0 2000 4000 6000 8000
step / time

0

100

200

300

400

top Hessian eigenvalue
(sharpness)

0 2000 4000 6000 8000
step / time

0.10

0.15

0.20

0.25

0.30

network output on
arbitrary test example

0 2000 4000 6000 8000
step / time

0.00

0.25

0.50

0.75

1.00

1.25

distance to gradient
descent trajectory

gradient descent
gradient flow
central flow

Figure 7: What macroscopic path does gradient descent take?
Gradient descent (blue) is well-approximated by gradient flow
(red) so long as the sharpness is below 2/η. However, once
gradient descent reaches the edge of stability, it takes a different
path. Our central flow (black) approximates gradient descent
even at the edge of stability. The plots on top present data from
an experiment (same as Figure 5); the drawing on the right is a
cartoon of the underlying weight-space dynamics.

{w : S(w) ≤ 2/η}

special case of one unstable eigenvalue, these dynamics are nonlinear and highly sensitive to initial conditions. The
more typical case of multiple unstable eigenvalues is even harder to analyze: the dynamics with k unstable eigenvalues
do not decouple into k independent systems, and instead involve O(k2) mutually interacting quantities, yielding
complex and often chaotic behavior.

Our key insight in this paper is that a fine-grained analysis of the EOS dynamics may not be necessary. Rather,
we argue that the more important question is: what macroscopic (i.e. long-term) trajectory does gradient descent
take through weight space? In the next section, we will use a heuristic time-averaging argument to characterize this
macroscopic trajectory. Our analysis will not only recover the main finding of Damian et al. (2023) for a single
unstable eigenvalue, but will also readily generalize to the challenging setting of multiple unstable eigenvalues.

3.2 Deriving the Gradient Descent Central Flow

The standard continuous-time approximation to gradient descent is the gradient flow:13

dw

dt
= −η∇L(w). (6)

Cohen et al. (2021) observed that trajectory of gradient descent is well-approximated1415 by that of gradient flow so
long as training is stable, i.e. so long as the sharpness S(w) remains below 2/η. However, once the sharpness reaches
2/η and the dynamics enter the EOS regime, gradient descent departs from the gradient flow trajectory and takes a
different path, as illustrated in Figure 7.16

13We fold η into the definition of gradient flow so that there is a correspondence between step t of gradient descent and time t of gradient
flow. This will especially be useful when analyzing adaptive optimizers where the effective step size is a dynamic quantity.

14Barrett and Dherin (2021) argued that the accuracy of the gradient flow approximation can be improved by adding a penalty on the
squared gradient norm. However, their modified flow does not hold in the EOS regime, and in the stable regime, we found that the accuracy
improvement it brings is relatively small (Appendix C.1). Therefore, for simplicity, we leave out any such term from our flows.

15It remains theoretically unexplained why gradient flow is such a good fit to gradient descent. Existing bounds for the distance between
gradient descent and gradient flow increase exponentially with time, with an exponent determined by the most negative Hessian eigenvalue
(Elkabetz and Cohen, 2021). Empirically, such bounds are overly conservative.

16Even in the simplest setting of one unstable eigenvalue, capturing the EOS dynamics necessarily requires three variables: one for the
oscillations along the top Hessian eigenvector, one for the top Hessian eigenvalue (sharpness), and one for the remaining directions. Since
visualizing three-dimensional dynamics is difficult, we will frequently resort to two-dimensional cartoons (e.g. Figure 7). Such a “projection”
will necessarily drop information. Accordingly, Figure 7 captures sharpness and remaining directions, but leaves out the back-and-forth
oscillations along the top Hessian eigenvector. Figure 2, by contrast, captures these back-and-forth oscillations but leaves out the sharpness.

9

We now derive a more general differential equation, which we call a central flow, that approximates the trajectory of
gradient descent even at the edge of stability. The central flow directly models the time-averaged (i.e. smoothed)
trajectory of the oscillatory optimizer. In other words, the central flow averages out the oscillations while retaining
their lasting effect on the macroscopic trajectory. We will derive the central flow using a heuristic time-averaging
argument, and we will empirically demonstrate that it can accurately predict long-term optimization trajectories on a
variety of neural networks with a high degree of numerical accuracy, as illustrated in Figure 7.

We will abuse notation and use E to denote “local time-averages” of deterministic quantities — see Appendix A.1.5
for additional discussion. The gradient descent central flow is intended to model the time-averaged trajectory
E[wt]. To simplify notation, we will also use wt := E[wt] to denote the time-averaged trajectory.

3.2.1 Warm-up: the Special Case of One Unstable Eigenvalue

We will introduce our time-averaging methodology by analyzing the special case when only the largest Hessian
eigenvalue has crossed the critical threshold 2/η, and gradient descent oscillates along a single direction — the
corresponding eigenvector. Our fully general analysis, given later in Section 3.2.2, will allow for an arbitrary number
of eigenvalues to be at the edge of stability, and for eigenvalues to enter and leave the edge of stability.

Thus, in this section, we start our analysis at the instant when the sharpness S(w) first reaches 2/η. From this point
onward, we will model the gradient descent trajectory by:

wt = wt + xtut, (7)

where wt is the gradient descent iterate, wt is the time-averaged iterate, ut is the top Hessian eigenvector at wt, and
xt denotes the displacement between wt and wt along the ut direction.17 Note that by definition, E[xt] = 0, i.e. the
time-averaged displacement is zero. To track the evolution of the time-averaged iterate wt, we time-average both
sides of the gradient descent update eq. (1):

wt+1 = wt − η E[∇L(wt)]︸ ︷︷ ︸
time-averaged gradient

. (8)

That is, the time-averaged iterates follow the (negative) time-averaged gradient. To approximate the time-averaged
gradient, we first Taylor-expand the gradient∇L around the time-averaged iterate wt:

∇L(wt) = ∇L(wt)︸ ︷︷ ︸
gradient at wt

+xt S(wt)ut︸ ︷︷ ︸
oscillation

+ 1
2 x

2
t ∇S(wt)︸ ︷︷ ︸

sharpness reduction

+ O(x3). (9)

We then take the time average of both sides, averaging over the x oscillations. This reflects an implicit assumption
that the x oscillations are happening fast relative to the remaining training dynamics:18

E[∇L(wt)] ≈ ∇L(wt) + (((((((E[xt]S(wt)ut︸ ︷︷ ︸
0 because E[xt]=0

+ 1
2 E[x

2
t]∇S(wt)︸ ︷︷ ︸

implicit sharpness penalty

. (10)

This calculation shows that the time-averaged gradient E[∇L(wt)] is equal to the gradient at the time-averaged iterate
∇L(wt), plus an implicit sharpness penalty whose strength is proportional to E[x2t], the variance of the oscillations
at step t. Substituting eq. (10) into eq. (8) and switching to continuous time, we therefore model the time-averaged
iterates wt by the sharpness-penalized gradient flow w(t) defined by:

dw

dt
= −η

[
∇L(w) + 1

2σ
2(t)∇S(w)︸ ︷︷ ︸

implicit sharpness penalty

]
. (11)

17 This is a simplification. In reality, we know that gradient descent is displaced from w in at least two directions: the u direction and
the ∇S(w) direction, with the latter responsible for the fluctuations in the sharpness. However, when modeling the time-averaged gradient,
we will only account for the displacement in the u direction. This is analogous to Damian et al. (2023, Assumption 5). The success of our
experiments validates this simplification.

18When time-averaging eq. (9), we assume that the eigenvector u changes slowly relative to the displacement x so that E[xtut] ≈ E[xt]ut.

10

2800 3000 3200 3400 3600
step / time

180

190

200

210

220

top Hessian eigenvalue (sharpness)
gradient descent
central flow

3000 3200 3400 3600
step / time

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

variance of oscillations along
top Hessian eigenvector

displacement2 along top
Hessian eigenvector
its time-average
central flow 2(t)

2800 3000 3200 3400 3600
step / time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

distance between gradient
descent and both flows

gradient flow
central flow

Figure 8: Illustrating the central flow with one unstable eigenvalue. Left: the sharpness (top Hessian eigenvalue)
cycles around 2/η under gradient descent, and stays capped at 2/η under the central flow. Center: the central flow’s
σ2(t) accurately predicts the variance of the oscillations. In light blue, we plot the squared displacement between
gradient descent wt and the central flow w(t) along the top Hessian eigenvector. In dark blue, we plot its time average,
i.e. the empirical variance of the oscillations (we use Gaussian smoothing). This is well-predicted by the central
flow’s σ2(t), plotted in black. Right: the Euclidean distance (black) between gradient descent wt and the central flow
w(t) stays small over time, indicating that the central flow accurately predicts the long-term trajectory of gradient
descent. In contrast, the distance (red) between gradient descent and the gradient flow eq. (6) grows large over time.

Here, σ2(t) is a still-unknown quantity intended to model E[x2t], the instantaneous variance of the oscillations at time
t. This quantity also controls the strength of the implicit sharpness penalty. To determine σ2(t), we argue that only
one value is consistent with the observed behavior of gradient descent. Empirically, once the sharpness reaches the
critical threshold 2/η, it does not continue to rise indefinitely; rather, it remains dynamically regulated around 2/η.
Thus, we will enforce that the central flow never increases the sharpness S(w(t)) past 2/η. The time derivative of the
sharpness under a flow of the form eq. (11) can be easily computed using the chain rule:

dS(w)

dt
=

〈
∇S(w), dw

dt

〉
= η ⟨∇S(w),−∇L(w)⟩︸ ︷︷ ︸

change in sharpness
under gradient flow

− 1
2ησ

2(t)∥∇S(w)∥2︸ ︷︷ ︸
sharpness reduction

from oscillations

. (12)

When the first term, the change in sharpness under the gradient flow, is negative, gradient descent will leave the edge
of stability and will once again follow gradient flow — this is made precise in Section 3.2.2. Therefore, we focus on
the case where this first term is positive, i.e. where progressive sharpening holds. As the sharpness is currently at
2/η and must remain at 2/η, we must have that dS(w)

dt = 0. Since dS(w)
dt is affine in σ2(t), we can easily solve for the

unique value of σ2(t) that ensures dS(w)
dt = 0:

σ2(t) =
2 ⟨∇S(w),−∇L(w)⟩

∥∇S(w)∥2
. (13)

Intuitively, this is the unique σ2(t) for which the downward force of oscillation-induced sharpness reduction “cancels
out” the upwards force of progressive sharpening so the sharpness remains locked at 2/η. The central flow for a
single unstable eigenvalue is given by substituting this σ2(t) into eq. (11):

dw

dt
= −η

[
∇L(w) + 1

2σ
2(t)∇S(w)

]
where σ2(t) =

2 ⟨∇S(w),−∇L(w)⟩
∥∇S(w)∥2

. (14)

Figure 8 demonstrates this flow in action. We run gradient flow until the sharpness hits 2/η, and then switch to
eq. (14) at that time. (The complete central flow, defined in the next section, will handle such switches automatically.)
Observe that the distance in weight space between gradient descent and the central flow remains small over time,19

19Observant readers might notice that the distance between gradient descent and the central flow starts to grow once the sharpness hits 2/η
and is actually initially larger than the distance between gradient descent and the gradient flow. This is because the central flow has already
started to apply sharpness regularization, but the discrete gradient descent trajectory has not yet done so.

11

verifying that the central flow accurately predicts the long-term trajectory of gradient descent. Moreover, observe that
σ2(t) from eq. (13) accurately predicts the empirical variance of the oscillations along the top Hessian eigenvector,
further demonstrating that our time-averaging argument is accurately capturing gradient descent’s behavior.

Intuitively, whereas gradient descent reduces sharpness in impulse-like spurts which are triggered whenever the
oscillations grow large, the central flow applies a sharpness-reduction force continuously, with the same average
strength over time. That these two processes stay close over long timescales implies that the oscillations are only
affecting the long-term gradient descent trajectory via their variance rather than via their fine-grained details (e.g the
precise shape of the light blue line in Figure 8, center). This is good news: while the fine-grained oscillations may
be challenging to analyze, we have shown that their variance is easy to analyze, as there is only one possible value
that is consistent with the observed edge of stability equilibrium. In this way, we have successfully used a heuristic
argument to solve for the time-averaged trajectory of gradient descent.

Interpretation as Projection While we have derived the central flow as a sharpness-penalized gradient flow, it can
be equivalently interpreted as a projected gradient flow. In particular, simplifying eq. (14) gives:

Figure 9: The central flow projects
out the ∇S(w) direction from the
loss gradient∇L(w).

dw

dt
= −η

[
I − ∇S(w)∇S(w)

⊤

∥∇S(w)∥2

]
∇L(w) = −ηΠ⊥

∇S(w)∇L(w), (15)

where Π⊥
v := I − vvT

∥v∥2 denotes the projection matrix onto the orthogonal
complement of v. This flow projects out the∇S direction from the gradient∇L
to keep the sharpness fixed at 2/η, as illustrated on the right.

Previously, Damian et al. (2023) proved that under certain conditions, gradient
descent at the edge of stability implicitly follows the trajectory of projected gra-
dient descent constrained to the stable region. We have thus nearly20 rederived
their result in a simpler, albeit non-rigorous, manner.

The projection interpretation will be useful below for reasoning about gradient descent’s behavior.

3.2.2 The Fully General Case

We will now derive the complete central flow, which applies in the fully general setting where any number of
eigenvalues can be at the edge of stability, including zero. When no eigenvalues are at the edge of stability, the central
flow will automatically reduce to the gradient flow. As above, we decompose the gradient descent trajectory as:

wt = wt + δt, (16)

where wt is the gradient descent iterate, wt := E[wt] is the time-averaged iterate, and δt denotes the displacement
between wt and wt, i.e. the oscillations. Because gradient descent oscillates along the Hessian eigenvectors that are at
the edge of stability, we model δt as lying within the span of these eigenvectors.21 For example, in the case where
only one direction is at the edge of stability, taking δt = xtut recovers the analysis in Section 3.2.1. Note that by
definition of wt, we have that E[δt] = 0. As before, the time-averaged iterates follow the time-averaged gradient
E[∇L(wt)]. To compute the time-averaged gradient, we first Taylor-expand the gradient around wt:

∇L(wt) = ∇L(wt)︸ ︷︷ ︸
gradient at w

+ H(wt)δt︸ ︷︷ ︸
oscillation

+ 1
2 ∇wt δ

T
t H(wt)δt︸ ︷︷ ︸

implicit curvature penalty

+ O(∥δt∥3). (17)

20The flow eq. (15) actually differs slightly from the constrained trajectory in Damian et al. (2023), beyond being continuous rather than
discrete. In Damian et al. (2023), the stable region was defined as the set where S(w) ≤ 2/η and the the loss is directionally minimized along
the top Hessian eigenvector. The latter condition prevents their theory from applying to certain models (e.g. Kreisler et al., 2023, Appendix A).
Our central flow does not use the latter condition and hence does not suffer from such restrictions.

21Similar to footnote 17, this neglects the motion in the top Hessian eigenvalues. The success of our experiments justifies this simplification.

12

2000 2500 3000 3500 4000 4500 5000
step / time

125

150

175

200

225
top Hessian eigenvalues

gradient descent
central flow

2000 2500 3000 3500 4000 4500 5000
step / time

0

1

2

3
rank of (t)

central flow

2000 2500 3000 3500 4000 4500 5000
step / time

0.00

0.05

0.10

0.15

0.20

0.25

distance between gradient
descent and both flows

gradient flow
central flow

Figure 10: Illustrating the central flow (general case). Left: whenever a Hessian eigenvalue rises to 2/η, the central
flow prevents it from increasing further. Center: since Σ(t) models the covariance of the oscillations, its rank is
always equal to the number of Hessian eigenvalues at the edge of stability. We show in Figure 11 that Σ(t) accurately
predicts the covariance of oscillations. Right: the Euclidean distance between gradient descent wt and the central flow
w(t) stays small over time, indicating that the central flow accurately predicts the long-term trajectory of gradient
descent. In contrast, the distance between gradient descent and the gradient flow eq. (6) grows large over time.

The third term in this Taylor expansion reveals that the negative gradient at the iterate wt implicitly acts to decrease
the directional curvature in the direction δt. Time-averaging both sides and rearranging the third term yields:

E[∇L(wt)] ≈ ∇L(wt) + ������
H(wt)E[δt]︸ ︷︷ ︸

0 because E[δt]=0

+ 1
2 ∇wt

〈
H(wt),E[δtδTt]

〉︸ ︷︷ ︸
implicit curvature penalty

, (18)

where we use ⟨·, ·⟩ to denote the Frobenius inner product between two matrices, equivalent to flattening the matrices
into vectors and taking the dot product. Thus, we see that the time-averaged gradient is the gradient at the time-
averaged iterate, plus an implicit curvature penalty whose strength and direction are determined by the covariance of
the oscillations E[δtδTt]. Substituting eq. (18) into the time-averaged gradient descent update (eq. 8) and switching to
continuous time, we model the time-averaged iterates wt by a differential equation of the form:

dw

dt
= −η

[
∇L(w) + 1

2 ∇w ⟨H(w),Σ(t)⟩︸ ︷︷ ︸
implicit curvature penalty

]
. (19)

Here, Σ(t) is a still-unknown quantity intended to model E[δtδTt], the instantaneous covariance of the oscilla-
tions at time t. This matrix also controls an implicit curvature penalty which penalizes the Σ-weighted Hessian
⟨Σ(t), H(w)⟩.22 Similar as before, to determine Σ(t), we impose three conditions:

1. Since Hessian eigenvalues which reach the critical threshold 2/η do not continue to rise further, we impose the
condition that Σ(t) should not allow any Hessian eigenvalues to rise beyond 2/η.

2. Since gradient descent oscillates within the span of the unstable eigenvectors, we impose the condition that
Σ(t), which models the covariance of these oscillations, should be supported23 within the span of the Hessian
eigenvectors whose eigenvalue is equal to 2/η.24

3. Since Σ(t) models a covariance matrix, we impose the condition that Σ(t) should be positive semidefinite.

These three conditions turn out to imply a unique value of Σ(t). In particular, we detail in Appendix A.2 that Σ(t)
must be the unique solution to a type of convex program known as a semidefinite complementarity problem (SDCP),

22This is a weighted sum of all entries in the Hessian matrix, where each entry is weighted by the corresponding entry of Σ(t).
23We mean that span[Σ] ⊆ U , where U is the span of the Hessian eigenvectors with eigenvalue 2/η. Equivalently, we mean that Σ can be

written as Σ = UXUT where the k columns of U form a basis for the k-dimensional subspace U , and X is a k × k symmetric matrix.
24For gradient descent, the unstable eigenvectors have eigenvalues which fluctuate around 2/η. However, for the central flow, the unstable

eigenvectors will have eigenvalues which are exactly equal to 2/η.

13

4600 4800 5000 5200 5400
step / time

0.000

0.005

0.010

0.015

0.020
eigenvector 1

(t) eigenvalue
displacement2 along
(t) eigenvector

its time-average

4600 4800 5000 5200 5400
step / time

0.000

0.005

0.010

0.015

0.020
eigenvector 2

4600 4800 5000 5200 5400
step / time

0.000

0.005

0.010

0.015

0.020
eigenvector 3

Figure 11: Central flow can accurately predict covariance of oscillations. We show that the central flow’s Σ(t)
accurately predicts the covariance of the oscillations. For this stretch of training, there are 3 Hessian eigenvalues at the
edge of stability, so Σ(t) has 3 nonzero eigenvalues (subpanels). In black, we plot each eigenvalue of Σ(t); in colors,
we plot the squared magnitude of gradient descent’s displacement from the central flow along the corresponding
eigenvector (light = raw values, dark = time average using Gaussian smoothing). Observe that each eigenvalue of
Σ(t) accurately predicts the variance of oscillations along the corresponding eigenvector.

which are described in Appendix A.1.4.25 The central flow is defined as eq. (19) with this Σ(t):

dw

dt
= −η

[
∇L(w) + 1

2∇w ⟨H(w),Σ(t)⟩
]

where Σ(t) solves the SDCP in eq. (70). (20)

A formal definition for the central flow is given in Appendix A.2, Definition 4. We note that Σ(t) can be efficiently
represented numerically as it is a low rank matrix, with rank at most the number of unstable eigenvalues.

We now elaborate on the behavior of the central flow:

1. Stable regime: If all Hessian eigenvalues are below 2/η, then the SDCP returns Σ(t) = 0, and the central flow
reduces to the gradient flow.

2. One unstable eigenvalue: If one Hessian eigenvalue is at 2/η, and if the gradient flow would increase this
eigenvalue above 2/η, then our analysis reduces to that of Section 3.2.1. In particular, the SDCP returns a
rank-one matrix of the form Σ(t) = σ2 uu⊤ where u is the top Hessian eigenvector at w, and σ2 is defined in
eq. (14). On the other hand, if the gradient flow would decrease this eigenvalue below 2/η, then Σ(t) = 0, and
the central flow will follow the gradient flow out of the edge of stability.

3. Multiple unstable eigenvalues: In general, the SDCP returns a Σ(t) which constrains all Hessian eigenvalues
currently at 2/η from rising above that value. Often, this Σ(t) causes all Hessian eigenvalues currently at 2/η
to remain fixed at 2/η.26. However, it also allows for eigenvalues to leave EOS when appropriate.

Figure 10 demonstrates the central flow in action. Initially, all Hessian eigenvalues are below 2/η, so Σ(t) = 0 and
the central flow reduces to the gradient flow. Once the top Hessian eigenvalue reaches 2/η around step 2900, Σ(t)
becomes a rank-one matrix, and the central flow keeps the top Hessian eigenvalue locked at 2/η, as it mimics the
effects of oscillating along the the top eigenvector direction. Once the second Hessian eigenvalue also reaches 2/η
around step 3600, Σ(t) becomes a rank-two matrix, and the central flow keeps the top two eigenvalues both locked
at 2/η, as it mimics the effects of oscillating simultaneously along the top two eigenvector directions. Throughout,
the Euclidean distance between gradient descent’s wt and the central flow’s w(t) stays small over time (right plot),
indicating that the central flow accurately tracks the long-term trajectory of gradient descent. In contrast, the distance
between gradient descent and the gradient flow eq. (6) grows large over time.

25Interestingly, complementarity problems arise frequently in the the study of contact mechanics. EOS can be interpreted as the gradient
descent trajectory making “contact” with the boundary of the stable region, and then sliding along the boundary.

26There is a unique Σ that causes all Hessian eigenvalues currently at 2/η to remain fixed at 2/η, and it can be found by solving a linear
inverse, generalizing eq. (13). The solution to the SDCP coincides with this Σ at almost all times. However, this Σ cannot be used to define the
central flow, as it would never allow an eigenvalue to leave the edge of stability, and it is not necessarily PSD.

14

In Figure 11, we show that the central flow’s Σ(t) accurately predicts the covariance with which gradient descent
is oscillating around the central flow. In particular, we show that each eigenvalue of Σ(t) accurately predicts the
instantaneous variance of oscillations along the corresponding eigenvector of Σ(t). We find it striking that our theory
is able to accurately predict the covariance of these oscillations. While the oscillations are erratic and might appear
unpredictable, our findings reveal that a certain statistic — their covariance — is predictable after all. Moreover,
predicting this covariance seems to be sufficient to predict the long-term trajectory of gradient descent.

Interpretation as projection The projection interpretation in Section 3.2.1 generalizes to the case of an arbitrary
number of unstable eigenvalues. In particular, the central flow eq. (20) can be written as a flow which orthogonally
projects the negative gradient onto the so-called tangent cone of the stable region S = {w : S(w) ≤ 2/η}, which is
the set of directions in which one can move while still staying, to first order, within the stable region:27

dw

dt
= η projTwS[−∇L(w)]︸ ︷︷ ︸

project negative gradient onto
tangent cone TwS of set S

where S = {w : S(w) ≤ 2/η}︸ ︷︷ ︸
stable region S

. (21)

A formal definition is given in Definition 5. This projection interpretation will be used in Section 3.3 to show that the
loss along the central flow decreases monotonically.

Where does deep learning come in? Our principal claim is that, if initialized stably, gradient descent will
approximately follow the central flow over the long term. In the case where the sharpness does not rise to 2/η (e.g. on
a quadratic objective, where the sharpness is constant), then the central flow reduces to the gradient flow, and so our
claim reduces to the somewhat “uninteresting” claim that gradient descent will approximately follow the gradient flow.
The central flow only becomes nontrivial, and our claim only becomes “interesting,” in the event that the sharpness
rises to 2/η. This empirically tends to happen on deep learning objectives. However, we suspect that the central flow
might also hold on other kinds of objectives where the sharpness rises to 2/η during gradient descent.

3.2.3 Understanding the train loss curve and more

Figure 12 shows that the loss along the actual gradient descent trajectory is consistently higher than the loss along the
central flow. The intuitive explanation is that when gradient descent oscillates along the top Hessian eigenvector(s),
it can be visualized as “bouncing between valley walls” (Xing et al., 2018; Cohen et al., 2021; Wen et al., 2025),
whereas the time-averaged iterates run nearly along the “valley floor” (called a “river” in Wen et al. (2025)), as
illustrated on the right of Figure 12. The loss is higher on the valley walls, where the actual iterates are located, than

7000 7100 7200 7300 7400 7500
step

0.210

0.215

0.220

0.225

0.230

train loss
gradient descent (raw)
gradient descent (smoothed)
central flow
central flow prediction

7000 7100 7200 7300 7400 7500
step

0

2

4

6

gradient norm squared
gradient descent (raw)
gradient descent (smoothed)
central flow
central flow prediction

Central flow

Gradient
descent

progress direction

Figure 12: The train loss and gradient norm2 are larger along the raw gradient descent trajectory (light blue) than
along the central flow (solid black). The intuitive reason is that an oscillatory optimizer can be visualized as oscillating
between the walls of a “valley” (see cartoon on right). Because the central flow models the covariance of the
oscillations, it can render predictions for the time-averaged values of the loss and gradient norm2 along the gradient
descent trajectory (dashed black). These predictions are close to the empirical time-averaged values (dark blue).

27In the interior of the stable region (i.e. S(w) < 2/η), the tangent cone is the entire space, so this projection is a no-op and the central flow
reduces to the gradient flow. When exactly one eigenvalue is at the edge of stability, the tangent cone is the half-space {v : ∇S(w)T v ≤ 0}.

15

on the valley floor, where the time-averaged iterates are located.28

Fortunately, the central flow framework will still let us reason about the loss along the actual gradient descent
trajectory. Recall that the central flow predicts not just the time-averaged iterates w(t), but also the covariance of the
oscillations Σ(t). In particular, the central flow models the gradient descent trajectory {wt} as:29

wt = w(t) + δt, where E[δt] = 0 and E[δtδTt] = Σ(t).

Thus, for any quantity f(w) derived from the weights (e.g. loss or gradient norm), we can predict its time-averaged
value E f(wt) along the gradient descent trajectory wt by taking a quadratic Taylor expansion along the central flow
w(t), and time-averaging over δt:

E[f(wt)]︸ ︷︷ ︸
time-averaged

value along trajectory

≈ f(w(t))︸ ︷︷ ︸
value along central flow

+ 1
2

〈
∇2f(w(t)),Σ(t)

〉︸ ︷︷ ︸
contribution from oscillations

. (22)

For example, if f is the loss L, then because Σ(t) is supported on the Hessian eigenvectors with eigenvalue 2/η:

E[L(wt)]︸ ︷︷ ︸
time-averaged

loss along trajectory

≈ L(w(t))︸ ︷︷ ︸
loss along central flow

+ 1
η tr(Σ(t))︸ ︷︷ ︸

contribution from oscillations

:= L̄(t). (23)

See Appendix A.2.2 for an explicit derivation. Figure 12 shows that this prediction L̄(t) for the time-averaged loss
closely matches the actual time-averaged loss (computed with Gaussian smoothing). Both the central flow loss L(w(t))
and the predicted time-averaged loss L̄(t) model important quantities that are meaningful to DL practice:

• The central flow’s prediction for the time-averaged loss L̄(t) models the smoothed training loss curve, often
monitored in practice by Tensorboard (Abadi et al., 2015) or Weights and Biases (Biewald, 2020).

• The central flow loss L(w(t)) models the loss at the time-averaged iterate. This is similar to the loss at an
exponential moving average of the weights, or the loss after annealing the learning rate (Sandler et al., 2023).

The central flow perspective allows us to quantify both of these loss values and reason about them separately.

A similar point holds for other quantities,30 such as the gradient norm. Figure 12 shows that the squared gradient
norm along the central flow, ∥∇L(w(t))∥2 is much smaller than at the actual iterates, ∥∇L(wt)∥2. Intuitively, most
of the gradient at the iterates is spent “oscillating across the valley” and cancels out over the long run. The central
flow’s gradient is smaller because it leaves out these oscillations. Yet, because the central flow models the covariance
Σ(t) of the oscillations, it can still predict the time-average of the squared gradient norm at the iterates, using eq. (74)
from Appendix A.2.2. Figure 12 demonstrates the accuracy of this prediction.

3.2.4 Empirical verification

We empirically find that the central flow can accurately predict the long-term trajectory of gradient descent in a variety
of deep learning settings. For example, Figure 13 shows the central flow on several different deep learning settings
(details in Section 6). Observe that the central flow accurately predicts the weight-space trajectory, the covariance of
the oscillations, and the time-averaged training loss curve. Figures 32(a) and 32(b) show that the central flow can
accurately predict the time-averaged training loss curve at different learning rates across a variety of deep learning
settings. Our full set of gradient descent experiments can be found in Appendix E.1.

28This does not mean that the loss landscape is “locally convex” in any deep sense (indeed, the Hessian generally has negative eigenvalues).
It merely reflects that the optimizer is oscillating along directions of positive curvature.

29We emphasize that the central flow does not model the “distribution” (so to speak) of the oscillations δt. Rather, it only models the second
moment E[δtδTt], under the theory that the macroscopic trajectory of gradient descent is completely characterized by this second moment.

30Interestingly, for some quantities (such as the network outputs), we find that the value along the central flow is already an excellent
approximation to the time-averaged value along the discrete optimizer trajectory, and eq. (22) is not necessary.

16

0 1000 2000 3000 4000
step / time

0.1

0.2

0.3

0.4

train loss
raw GD loss
smoothed GD loss
central flow loss
time-average prediction

0 1000 2000 3000 4000
step / time

0

100

200

300

400
top hessian eigenvalues

gradient descent
central flow
gradient flow (top 1)

0 1000 2000 3000 4000
step / time

0.000

0.001

0.002

0.003

0.004

0.005

0.006

real vs. predicted
oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step / time

0.0

0.2

0.4

0.6

0.8

distance to gradient descent
central flow
gradient flow

CN
N

0 1000 2000 3000 4000 5000 6000
step / time

0.20

0.25

0.30

0.35

0 1000 2000 3000 4000 5000 6000
step / time

0

100

200

300

400

0 1000 2000 3000 4000 5000 6000
step / time

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 1000 2000 3000 4000 5000 6000
step / time

0.0

0.2

0.4

0.6

0.8

1.0

Vi
T

0 1000 2000 3000 4000 5000 6000
step / time

0.10

0.15

0.20

0.25

0.30

0.35

0 1000 2000 3000 4000 5000 6000
step / time

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000
step / time

0.000

0.001

0.002

0.003

0 1000 2000 3000 4000 5000 6000
step / time

0.0

0.2

0.4

0.6

0.8

Re
sN

et

0 1000 2000 3000 4000 5000 6000
step / time

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000 5000 6000
step / time

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000
step / time

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0 1000 2000 3000 4000 5000 6000
step / time

0.0

0.5

1.0

1.5

2.0

LS
TM

0 1000 2000 3000 4000 5000 6000
step / time

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000 5000 6000
step / time

0

25

50

75

100

125

150

0 1000 2000 3000 4000 5000 6000
step / time

0.000

0.001

0.002

0.003

0.004

0.005

0 1000 2000 3000 4000 5000 6000
step / time

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
or

m
er

0 1000 2000 3000 4000 5000 6000
step / time

0.175

0.200

0.225

0.250

0.275

0.300

0 1000 2000 3000 4000 5000 6000
step / time

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000
step / time

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0 1000 2000 3000 4000 5000 6000
step / time

0.0

0.1

0.2

0.3

0.4

M
am

ba

Figure 13: Verifying the gradient descent central flow across various architectures. Across various architectures,
the central flow accurately predicts the weight-space trajectory, the covariance of the oscillations, and the time-
averaged loss curve. See Section 6 for more experimental details and Appendix E for our full set of raw experiments.

17

Nevertheless, our derivation relied on informal mathematical reasoning, and certain factors do empirically affect the
quality of the central flow approximation. First, the central flow tends to become less accurate as the learning rate η
is made increasingly large. Second, on some deep learning problems, higher-order terms cause the central flow to
slightly mispredict Σ(t), causing error to accumulate over the long run. Third, large spikes also can throw off the
central flow. The latter two issues empirically seem to be more common when the loss criterion is cross-entropy rather
than MSE. We discuss these points at greater length in Section 6. We hope that future work can rigorously understand
the conditions under which the central flow does or does not approximate the gradient descent trajectory.

3.3 Understanding Gradient Descent via its Central Flow

We have shown that the central flow is a smooth curve that characterizes the macroscopic trajectory of gradient
descent. We now explain why this makes it a useful theoretical tool for reasoning about optimization.

6000 6025 6050 6075 6100 6125 6150 6175 6200
step/time

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60
network output on arbitrary example

gradient descent
central flow

Averaging out oscillations reveals the underlying order At the
edge of stability, gradient descent’s oscillations lead to wild fluctua-
tions in many training-related quantities, such as the training loss and
the network’s predictions (Rosenfeld and Risteski, 2024). For exam-
ple, the figure on the right shows the evolution under gradient descent
of the network’s prediction on an example. One can see that along the
actual gradient descent trajectory (blue), training proceeds erratically.
In contrast, the central flow (black) is a more coherent training process
which makes steady, continuous progress over time. By averaging out
the oscillations, the central flow reveals the underlying order hidden
beneath the chaotic oscillatory dynamics.31

dw(t)
dt

−η∇L(wt)

w(t)

wt

A smooth curve can be analyzed using calculus Because the central
flow is a smooth curve, we can leverage calculus to reason quantitatively
about the dynamics of training. Crucially, along the central flow, the
time derivative dw(t)

dt meaningfully reflects the optimizer’s direction of
motion over the near term (see cartoon on left). In comparison, along the
gradient descent trajectory, the analogous update −η∇L(wt) is dominated
by oscillations and hence does not meaningfully reflect the direction of
motion over the near term — only over the current step.

For any quantity f(w) derived from the weights w, we can use the chain rule
to compute its rate of change under the central flow: df

dt = ⟨∇f(w), dwdt ⟩.
We will now use this to reason about the rate of loss decrease.

2000 3000 4000 5000 6000 7000 8000
step/time

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

train loss
gradient descent loss
central flow loss
central flow prediction
for time-averaged loss
slope of gradient flow

Reasoning about training loss curve Consider the most basic ques-
tion one can ask about an optimization algorithm: how fast is the loss
going down? For the “raw” gradient descent trajectory, the loss doesn’t
always go down — instead, the loss behaves non-monotonically over
short timescales, while only decreasing over long timescales. Thus, rea-
soning about the rate of loss decrease is challenging. In contrast, under
the central flow, the loss evolves smoothly, and its rate of decrease can
be quantified using the chain rule: dL(w)

dt =
〈
∇L(w), dwdt

〉
. Combining

this with the projection interpretation (Definition 5), one can easily
prove that the loss along the central flow L(w(t)) is monotonically
decreasing. In other words, the central flow loss is a valid potential function for the optimization process:

Proposition 1. Under the central flow w(t), we have d
dtL(w(t)) ≤ 0.

31Arguably, the central flow can even be viewed as the “true” training process, with the actual gradient descent trajectory being merely a
noisy realization of this idealized trajectory which is computationally cheap to obtain.

18

See Appendix A.2.3 for the proof. The intuition is that, even after the negative gradient is projected onto the tangent
cone of the stable region, it will still be negatively aligned with the gradient.

While averaging out the oscillations yields a central flow with a smoothly decreasing loss curve, the oscillations
still have an effect on this loss curve through their implicit curvature reduction effect, which can be shown to
slow down training. In particular, whereas the unregularized gradient flow eq. (6) decreases the loss at the speed
dL
dt = −η∥∇L(w)∥2, it is straightforward to show that the central flow optimizes at a slower speed:

Proposition 2. Under the central flow w(t), we have d
dtL(w(t)) ≥ −η∥∇L(w)∥

2.

See Appendix A.2.3 for the proof. The intuition is that because the central flow projects out the components of the
loss gradient that would cause the sharpness to rise above 2/η, it has less gradient available with which to decrease
the loss. This effect is illustrated in the figure on the previous page, which shows that at various points during training,
the slope of the central flow loss curve is less steep than the rate of loss decrease under the gradient flow.

stable region,
large η

stable region,
small η

central flow, small η

central flow, large η

Understanding the effect of hyperparameters A notorious peculiarity
of deep learning is that optimizer hyperparameters affect not just the speed
of training, but also the particular path that the optimizer takes through
weight space (e.g. Keskar et al., 2017; Jastrzębski et al., 2019). As a result,
these hyperparameters can affect many properties of the final learned
model, including its robustness and generalization.32 Such effects are
implicit in the gradient descent update eq. (1). In contrast, the central flow
renders explicit all effects of the learning rate hyperparameter η on the
optimization process, allowing us to disentangle these effects from one
another. Recall from eq. (21) that the central flow is a projected gradient flow with learning rate η that is constrained
to the stable region S = {w : S(w) ≤ 2/η}. From this characterization, we see that the learning rate hyperparameter
η has two distinct effects on the central flow: (1) it acts as a time rescaling, which controls the speed of optimization
without affecting the overall trajectory; and (2) it determines the stable region, which affects the overall trajectory.
Thus, increasing the learning rate constrains gradient descent to a smaller subset of weight space, but also allows it to
traverse this set at a faster speed.33

Having introduced the central flows framework with an analysis of gradient descent, we will now use this methodology
to understand the behavior of two adaptive optimizers.

32Large learning rates are necessary for obtaining good generalization in some deep learning settings (e.g. Li et al., 2019). However,
obtaining the best generalization performance usually also requires stochastic optimization with a sufficiently small batch size. Since our paper
exclusively studies the deterministic setting, we decided to not focus on generalization in this paper.

33The learning rate η that is optimal from an optimization perspective (i.e. that will decrease the loss the fastest) will depend on the
trade-off between these two effects. Empirically, we observe that for deterministic gradient descent, larger learning rates usually optimize
faster (provided that training does not diverge), implying that the former effect is stronger.

19

4 Scalar RMSProp

As a stepping stone to the analysis of RMSProp in Section 5, we first study “Scalar RMSProp,” a simplification of
RMSProp which uses one global step size, rather than separate step sizes for each coordinate:3435

νt = β2νt−1 + (1− β2)∥∇L(wt)∥2, wt+1 = wt −
η
√
νt
∇L(wt). (24)

The algorithm maintains an exponential moving average (EMA), ν, of the squared gradient norm, and takes gradient
steps of size η/

√
ν, which we call the effective step size.36 The EMA hyperparameter β2 is a knob that interpolates

the algorithm between gradient descent when β2 = 1 and normalized gradient descent (NGD) when β2 = 0.37

While optimizers such as Scalar RMSProp are often said to utilize an “adaptive step size,” it has remained unclear
what precise property of the local landscape the step size is being adapted to (Orabona, 2020). In this section, we will
use the central flows framework to answer this basic question. After describing the dynamics of Scalar RMSProp
in Section 4.1 and deriving a central flow in Section 4.2, we will interpret this flow to understand the optimizer’s
behavior in Section 4.3. In particular:

• In Section 4.3.1, we make precise how Scalar RMSProp adapts its step size to the local loss landscape.
Specifically, we show that the optimizer’s dynamics implicitly set the effective step size to the value 2/S(w),
where S(w) is the current sharpness; this value is the largest stable step size at the current weights w.

• In Section 4.3.2, we show that step size adaptation is not the full story: Scalar RMSProp also implicitly
regularizes curvature throughout training, and in fact, at EOS, the hyperparameters η, β2 only affect the
time-averaged trajectory by modulating the strength of this curvature regularization.

• Bringing it all together, in Section 4.3.3 we describe how the interplay between step size adaptation and
curvature regularization gives rise to a mechanism we call acceleration via regularization, whereby the
optimizer implicitly steers itself towards low-curvature regions where it can take larger steps. We show that this
mechanism is key to the efficacy of Scalar RMSProp and to the function of its hyperparameters.

These points will generalize to RMSProp in Section 5, but are simpler to understand for Scalar RMSProp.

0 500 1000 1500 2000 2500
step

0.20

0.25

0.30

0.35
stable 1 unstable 2 unstable

train loss

0 500 1000 1500 2000 2500
step

0

1

2

3

4 stable 1 unstable 2 unstable
top effective Hessian eigenvalues

0 500 1000 1500 2000 2500
step

200

400
stable 1 unstable 2 unstable

top Hessian eigenvalues

Figure 14: A typical Scalar RMSProp trajectory. We train a Mamba network on a sequence task using Scalar
RMSProp with η = 2/400 and β2 = 0.99. While the top eigenvalues of the “raw” Hessian H(w) evolve freely
(right), the top eigenvalue of the effective Hessian ηH(w)/

√
ν equilibrates at the critical threshold 2 (center).

34Note that we have re-indexed ν compared to the standard definition of RMSProp (i.e. νt+1 → νt). This does not affect the trajectory and
just ensures the effective learning rate at step t is determined by νt, rather than νt+1, which simplifies the notation.

35This algorithm was also studied by Lyu et al. (2022). However, their analysis only applies along a manifold of global minima, as η → 0.
36The terms “learning rate” and “step size” are usually interchangeable. In this paper, to avoid ambiguity, we will use the phrase “learning

rate” to denote the hyperparameter, and “step size” or “effective step size” to denote the actual step sizes that are taken.
37When β2 = 1, Scalar RMSProp reduces to gradient descent with learning rate η/

√
ν0. Conversely, when β2 = 0, it reduces to normalized

gradient descent with learning rate η: wt+1 = wt − η · ∇L(wt)
∥∇L(wt)∥ .

20

4.1 The Dynamics of Scalar RMSProp

The dynamics of Scalar RMSProp revolve around the effective sharpness, defined as Seff := ηS(w)/
√
ν.38 First, the

effective sharpness controls the oscillations: when Seff > 2, Scalar RMSProp oscillates with growing magnitude along
high curvature direction(s). Second, such oscillations in turn trigger a reduction of effective sharpness. This occurs
via a combination of two distinct mechanisms. One mechanism, shared with gradient descent, is that oscillations
implicitly reduce sharpness due to eq. (9), thereby decreasing the effective sharpness via its numerator. The other
mechanism, new to Scalar RMSProp, is that oscillations increase the gradient norm and hence ν, thereby decreasing
effective sharpness via its denominator. These dynamics give rise to a negative feedback loop that keeps the effective
sharpness automatically regulated around the value 2, as depicted in Figure 14. The fine-grained dynamics are
complex and challenging to analyze, even in the case of a single oscillatory direction. Fortunately, we will see in the
next section that analyzing the time-averaged dynamics is much simpler.

4.2 Deriving the Scalar RMSProp Central Flow

Recall that while gradient descent trains stably, it is well-approximated by gradient flow. One can derive an analogous
“stable flow” for Scalar RMSProp (Ma et al., 2022, cf.):39

dw

dt
= − η√

ν
∇L(w), dν

dt
=

1− β2
β2

[
∥∇L(w)∥2 − ν

]
. (25)

However, at the edge of stability, the trajectory of Scalar RMSProp deviates from eq. (25). We will now derive a
more general central flow that characterizes the time-averaged trajectory even at EOS. In the main text, we will focus
on the case where one eigenvalue is (and remains at) the edge of stability. See Appendix A.3 for our full derivation
which accounts for multiple eigenvalues at EOS and for eigenvalues entering and leaving EOS.

In Section 3.2.1, we derived an approximation for the time-averaged gradient, E[∇L(w)]. Using the first two terms of
eq. (9), we can also derive a time-averaged approximation for the squared gradient norm E[∥∇L(w)∥2]:

E[∥∇L(w)∥2] ≈ ∥∇L(w)∥2 +
(((((((((((
2 ⟨∇L(w), u⟩S(w)E[x] + S(w)2 E[x2]

where we again used E[x] = 0 to ignore the middle term. This calculation makes clear that larger oscillations (i.e.
higher E[x2]) increase the squared gradient norm on average over time. Based on these time averages, we make the
ansatz that the joint dynamics of (wt, νt) follow a central flow (w(t), ν(t)) of the form:

dw

dt
= − η√

ν

[
∇L(w) + 1

2σ
2(t)∇S(w)︸ ︷︷ ︸

E[∇L(wt)]

]
,

dν

dt
=

1− β2
β2

[
∥∇L(w)∥2 + S(w)2σ2(t)︸ ︷︷ ︸

E[∥∇L(wt)∥2]

−ν
]
, (26)

where σ2(t) is a still-unknown quantity intended to model E[x2t], the instantaneous variance of the oscillations. As in
our analysis of gradient descent, there is a unique value of σ2(t) that maintains Seff(w, ν) = 2. To compute it, we
expand dSeff

dt using the chain rule: dSeff

dt = ⟨∂Seff

∂w , dwdt ⟩+
∂Seff

∂ν ·
dν
dt . Plugging in dw

dt ,
dν
dt from eq. (26) shows that dSeff

dt is
linear in σ2. Thus, there is a unique value of σ2 that will ensure dSeff

dt = 0, which is given by:

σ2(w; η, β2) =
β2

progressive sharpening︷ ︸︸ ︷
⟨−∇L(w),∇S(w)⟩+(1−β2)

effect of mean reversion on ν︷ ︸︸ ︷[
S(w)2/4− ∥∇L(w)∥2/η2

]
β2

1
2∥∇S(w)∥

2︸ ︷︷ ︸
sharpness reduction

+(1−β2)S(w)2/η2︸ ︷︷ ︸
effect of oscillation on ν

. (27)

38While we could have defined effective sharpness as S(w)/
√
ν so that it would equilibrate at 2/η, this version makes the analysis easier.

39 The 1 − β2 → 1−β2
β2

correction is necessary for small values of β2. For example, when β2 = 0 (i.e. normalized gradient descent),
νt = ∥∇L(wt)∥2 so in the continuous time ODE, ν(t) needs to adapt “instantly” to ∥∇L(w(t))∥2. See Appendix A.7 for additional
justification for this correction term.

21

0 500 1000 1500 2000 2500
step / time

0.20

0.25

0.30

0.35

train loss
Scalar RMSProp
Scalar RMSProp (smoothed)
central flow
(time-average prediction)
stable flow

0 500 1000 1500 2000 2500
step / time

0

1

2

3

4
top effective Hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500
step / time

0.0

0.5

1.0

1.5

2.0
1e 5

real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500
step / time

0.00

0.05

0.10

0.15

0.20

0.25
distance to Scalar RMSProp

central flow
stable flow

Figure 15: Central flow for Scalar RMSProp. The central flow (black) accurately models the time-averaged
trajectory of Scalar RMSProp even at the edge of stability, whereas the naive stable flow (red) follows a different path.
As with gradient descent, our analysis can predict the covariance Σ(t) with which Scalar RMSProp oscillates around
the central flow (third panel). The setting is the same as Figure 14.

The central flow for Scalar RMSProp with one unstable eigenvalue is given by eq. (26) with this value of σ2.40 The
full central flow, derived in Appendix A.3, is given in Definition 7. Figure 15 illustrates how this central flow can
accurately predict the long-term trajectory of Scalar RMSProp as well as the covariance with which Scalar RMSProp
is oscillating around that trajectory. Figures 33(a) and 33(b) show, in a variety of deep learning settings, that this
central flow can accurately predict the loss curve of Scalar RMSProp at different learning rates. Figure 36 shows that
the central flow holds across different values of β2. See Appendix E.2 for the full set of raw experiments.

The analysis in this section highlights the potential of our time-averaging methodology. With just a single invocation
of the chain rule, we have characterized the long-term trajectory of a complex dynamical system involving mutual
interactions between the oscillations, the sharpness, and the adaptive step size.

4.3 Understanding Scalar RMSProp via its Central Flow

We now interpret the Scalar RMSProp central flow to shed light on the behavior of the algorithm and the function of
its hyperparameters η and β2. Because the dynamics usually transition from stable to EOS quite early in training, we
focus on interpreting the central flow in the EOS regime.41

4.3.1 Implicit step size selection

2000 2500 3000 3500 4000
step / time

0.0032

0.0036

0.0040

0.0044

Effective step size
/ t (along optimizer)

2 / S(w(t)) (along flow)

The central flow renders explicit the step size strategy that is implicit
in the oscillatory dynamics of Scalar RMSProp. Recall that while the
central flow is at EOS, the effective sharpness Seff := ηS(w)/

√
ν is

fixed at 2. Indeed, this is the equilibrium condition that is automatically
maintained by the dynamics of optimization. This EOS condition can
be rearranged into a statement about the effective step size:

η/
√
ν = 2/S(w). (28)

That is, at EOS, the effective step size along the central flow is always
equal to the value 2/S(w). Notably, the value 2/S(w) is the largest
stable step size for gradient descent at location w. Thus, while Scalar
RMSProp is at EOS, the oscillatory dynamics continually adapt the effective step size to the current largest
stable step size, even as this value evolves throughout training. This is the precise sense in which Scalar RMSProp
“adapts” its step size to the local loss landscape.

40The Scalar RMSProp central flow can be interpreted as a projected flow in the augmented space (w, ν) under a certain non-Euclidean
norm. However, because this flow is not a gradient flow, it does not immediately suggest a decreasing potential function for Scalar RMSProp.

41In the stable regime (Seff < 2), the central flow is given by the stable flow eq. (25). For this flow, dw
dt

is directly proportional to that of
gradient flow, implying these flows traverse the same trajectory, just at a different speed (i.e. with a nonlinear time-rescaling). In this regime,
the effective step size generally increases monotonically, so Scalar RMSProp follows gradient flow with a learning rate warmup.

22

In principle, it would be possible for an optimizer to manually compute the sharpness S(w) at each iteration (e.g. by
using the power method), and to manually set the step size to 2/S(w). However, computing the sharpness would
incur some computational overhead, whereas we have shown that Scalar RMSProp finds the maximum stable step
size of 2/S(w) efficiently, using no more computation than is already used by gradient descent (namely, one gradient
computation per iteration). This rich behavior is implicit in the algorithm’s oscillatory dynamics.

Furthermore, note that even comprehending this behavior requires an appeal to some notion of time-averaging. The
effective step size is usually not exactly at 2/S(w), but rather is fluctuating around 2/S(w). The important point is
that it is 2/S(w) on average over time. The central flow perspective gives a way to reason about this behavior.

4.3.2 Implicit curvature reduction

Understanding the implicit step size strategy employed by Scalar RMSProp is not sufficient to fully characterize
the behavior of the algorithm. To do so, we need to return to the central flow, which additionally accounts for the
curvature regularization induced by oscillations. In general, the Scalar RMSProp central flow is a joint flow over
(w, ν). However, at EOS, because η/

√
ν = 2/S(w), we can eliminate ν from the expression for dw

dt , and write the
central flow in terms of w alone:42

dw

dt
= − 2

S(w)︸ ︷︷ ︸
effective step size

[
∇L(w) + 1

2
σ2(w; η, β2)∇S(w)︸ ︷︷ ︸
implicit sharpness penalty

]
(29)

where σ2(w; η, β2) is given by eq. (27). In other words, the time-averaged trajectory of Scalar RMSProp at EOS is
essentially equivalent to that of the following simpler-to-understand algorithm:

At each iteration, compute the sharpness S(w), and take a gradient step of size 2/S(w) on a
sharpness-regularized objective, where the strength of the sharpness regularizer is given by eq. (27).

Interestingly, the hyperparameters η, β2 are not used to determine the effective step size 2/S(w). Instead, their only
role is to modulate σ2, which controls the strength of the implicit sharpness penalty. The effect of the learning rate
hyperparameter η is to monotonically increase σ2 — indeed, the numerator of eq. (27) is increasing in η while the
denominator is decreasing in η, which implies the overall expression for σ2 is increasing in η. The simplest case
is that of NGD, i.e. when β2 = 0, for which eq. (27) reduces to σ2 ≈ η2

4 (see Appendix A.3). Meanwhile, the
effect of the hyperparameter β2 is to monotonically interpolate σ2 between that of normalized gradient descent when
β2 = 0 and that of gradient descent when β2 = 1.43 The interpretations of η, β2 generalize to the setting of multiple
oscillating directions, as detailed in ??.

4.3.3 Acceleration via regularization

To fully grasp the modus operandi of Scalar RMSProp, it is necessary to consider the link between step size adaptation
and curvature regularization. By regularizing sharpness S(w), Scalar RMSProp is able to steer itself towards regions
where the maximal locally stable step size of 2/S(w) is larger. In such regions, Scalar RMSProp can and does
take larger steps. Thus, by regularizing sharpness, Scalar RMSProp enables itself to take larger steps later in
training. We call this mechanism acceleration via regularization. Our experiments suggest that this mechanism is a
critical component of the algorithm’s effectiveness. In Figure 16, we compare the Scalar RMSProp central flow to
an ablated version which adapts the step size to 2/S(w) but does not regularize sharpness. Over the long term, this

42Note that at EOS we can rearrange the EOS condition as ν = η2S(w)2/4, which lets us write ν as a function of w and eliminate ν
everywhere in the central flow. This was already used to derive the expression for σ2 in eq. (27).

43We note that which of these is larger is situation dependent, so σ2 can be either monotonically increasing or monotonically decreasing in
β2. That said, because when β2 = 0, σ2(w; η, 0) ≈ η2/4 and when β2 = 1, σ2(w; η, 1) is independent of η, a general rule is that for small
learning rates, σ2 is monotonically increasing in β2, while for large learning rates, σ2 is monotonically decreasing in β2.

44In this figure, for Scalar RMSProp, we show the train loss at the second-order midpoints between iterates (see Appendix B.1).

23

0 200 400 600 800 1000
step

0.18

0.19

0.20

0.21
train loss L(w(t))

first 50 steps

0 200 400 600 800 1000
step

200

400

600

800

1000

sharpness S(w(t))

0 200 400 600 800 1000
step

0.01

0.02

0.03
effective step size: / (t)

Scalar RMSProp, = 0.01
Scalar RMSProp, = 0.02
central flows
ablation w/o
curvature reg

Figure 16: Implicit curvature regularization accelerates optimization for Scalar RMSProp. Starting from the
same initial point, we run Scalar RMSProp at two different learning rates (blue and orange), alongside the corre-
sponding central flows (black). We also run an ablated flow dw

dt = − 2
S(w)∇L(w) which has curvature regularization

removed (purple). All three flows use the same step size strategy, and differ only in the strength of implicit curvature
regularization. Initially (see inset), the flows with higher curvature regularization optimize slower; however, over the
longer run, they take larger steps and optimize faster. This figure is in the same setting as Figure 15.44

ablated flow optimizes slower than the Scalar RMSProp central flow, because it traverses sharper regions of weight
space in which it is forced to take smaller steps. (See Appendix D, Figure 40 for more settings.)

The mechanism of “acceleration via regularization” is also key for understanding the function of the learning rate
hyperparameter η. We have seen that at EOS, the only direct effect of η on the central flow is to modulate the strength
of sharpness regularization, with higher η inducing stronger sharpness regularization. Thus, counterintuitively, the
instantaneous effect of a higher η is often to slow down optimization. However, as we illustrate in Figures 16 and 40,
over longer timescales, higher η steers the trajectory into lower-sharpness regions, in which Scalar RMSProp’s
effective step size will be larger, thereby tending to speed up optimization. Thus, as one would expect of a learning
rate hyperparameter, larger η can accelerate optimization; however they do so through this indirect mechanism.

24

5 RMSProp

We now study RMSProp (Tieleman and Hinton, 2012), which is equivalent to Adam (Kingma and Ba, 2015) without
momentum. RMSProp maintains an EMA ν of the elementwise squared gradients∇L(w)⊙2, and uses per-coordinate
effective step sizes of η/

√
ν:45

νt = β2νt−1 + (1− β2)∇L(wt)
⊙2, wt+1 = wt −

η
√
νt
⊙∇L(wt), (30)

where ⊙ represents the entrywise product. RMSProp can also be viewed as preconditioned gradient descent
wt+1 = wt − P−1

t ∇L(wt) with the dynamic preconditioner Pt := diag(
√
νt/η).46 While Adam employs the same

dynamic preconditioner and has achieved widespread success in deep learning, it has remained unclear why this
specific preconditioning strategy is so effective (Kunstner et al., 2019; Orabona, 2020; Martens, 2020). A common
folklore belief is that Adam/RMSProp adapts to the local “curvature” (i.e. Hessian). However, it is a priori unclear how
this can be so, since the algorithm uses the (squared) gradient, not the Hessian, to update its preconditioner.

In this section, we use the central flows framework to understand the behavior of RMSProp. We will show that
RMSProp does adapt to the local Hessian after all, but the reason is inextricably tied to its oscillatory dynamics,
which have not been previously studied.

We start by describing the dynamics of RMSProp in Section 5.1. We then derive a central flow in Section 5.2. Finally,
in Section 5.3, we interpret this flow to understand the optimizer’s behavior. In particular:

• In Section 5.3.1, we show that RMSProp’s preconditioner is implicitly determined by the algorithm’s oscillatory
dynamics, and we make this preconditioner explicit for the first time. Specifically, we show that RMSProp
computes its preconditioner by solving a convex program (eq. 35) involving the Hessian. This clarifies that
RMSProp is implicitly a second-order optimizer, despite only accessing the loss through first-order gradients.

• In Section 5.3.2, we show that, like Scalar RMSProp, the success of RMSProp relies not only on this precon-
ditioning strategy, but also on an acceleration via regularization mechanism whereby implicitly regularizing
curvature allows the optimizer to take larger steps later in training.

5.1 The Dynamics of RMSProp

To give some intuition into RMSProp’s behavior, Figure 17 plots the dynamics of the squared gradient∇L(wt)
⊙2 and

its EMA νt at several coordinates over a stretch of training. Observe that the entries of the squared gradient fluctuate

2000 2100 2200 2300 2400 2500
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
1e 8 coordinate 1

2000 2100 2200 2300 2400 2500
step

0

1

2

3

4
1e 7 coordinate 2

2000 2100 2200 2300 2400 2500
step

0.0

0.2

0.4

0.6

0.8

1.0
1e 9 coordinate 3

gradient2

Figure 17: RMSProp ν is determined by oscillations. While training a network using RMSProp, we plot the
squared gradient ∇L(wt)

⊙2 (light blue) and its EMA νt (dark blue) at three coordinates (subpanels). Due to the
EOS oscillations, the squared gradient fluctuates, causing the EMA νt to also fluctuate. Since this EMA is used
to determine the effective step sizes η/

√
νt, analyzing these dynamics is necessary for understanding RMSProp’s

adaptivity. This network is a ResNet trained on a subset of CIFAR-10 using η = 2e-5, β2 = 0.99 and MSE loss.

45Our analysis can accommodate both bias correction and an ϵ-dampening (dividing by
√
ν + ϵ rather than

√
ν) which are used by Adam

(see Appendix A.5). However, to simplify exposition, the main text focuses on this simpler version of RMSProp.
46Folding η into the preconditioner is unconventional, but will make the analysis clearer.

25

0 500 1000 1500 2000
step / time

0.1

0.2

0.3

0.4

0.5
train loss
RMSProp
RMSProp (smoothed)
central flow
(time-avg prediction)
stable flow

0 500 1000 1500 2000
step / time

0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000
step / time

0.00000

0.00005

0.00010

0.00015

0.00020

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 500 1000 1500 2000
step / time

0

1

2

3

4

distance to RMSProp
central flow
stable flow

Figure 18: Central flow for RMSProp. The RMSProp central flow (black) accurately models the macroscopic
trajectory of RMSProp even at EOS, whereas the naive stable flow (red) follows a different path. As for gradient
descent and Scalar RMSProp, we are able to predict the covariance Σ(t) with which RMSProp oscillates around the
central flow (third panel). This figure is in the same setting as Figure 17.

rapidly, causing their EMA to also fluctuate. Since this EMA ν directly determines the effective step sizes η/
√
ν,

understanding the origin of this behavior is necessary to understand how RMSProp sets its effective step sizes.

These fluctuations in the gradient arise because RMSProp is operating in an oscillatory edge of stability regime. To
understand why RMSProp oscillates, first consider running preconditioned gradient descent wt+1 = wt−P−1∇L(wt)
on a quadratic function with Hessian H . The resulting dynamics are controlled by the effective Hessian P−1H .
Namely, if any eigenvalues of this matrix exceed the critical threshold 2, then preconditioned GD will oscillate
with exponentially growing magnitude along the corresponding (right) eigenvectors.47 For RMSProp in deep
learning, both the Hessian H(wt) and the preconditioner Pt = diag(

√
νt/η) can vary. However, a local quadratic

Taylor approximation suggests that RMSProp will oscillate if the largest eigenvalue of the current effective Hessian
P−1
t H(wt) exceeds the critical threshold 2.48 We refer to this quantity as the effective sharpness Seff(wt, νt):

Seff(wt, νt) := λ1(P
−1
t H(wt)). (31)

Paralleling the dynamics of gradient descent, Cohen et al. (2022) observed that RMSProp typically operates in an
oscillatory EOS regime that revolves around the effective sharpness eq. (31). On the one hand, oscillations ensue
whenever the effective sharpness rises above the critical threshold 2.49 On the other hand, such oscillations reduce the
effective sharpness, both by inducing implicit regularization of curvature (i.e. shrinking H(wt)), and by growing the
gradient and hence the preconditioner Pt. The net result is that the effective sharpness equilibrates around the value 2
(see Figure 18), as the optimizer oscillates along the top eigenvectors of the effective Hessian.

5.2 Deriving the RMSProp Central Flow

Similar as before, we now derive a central flow (w(t), ν(t)) that jointly models the time-averaged dynamics of wt, νt.
We defer the full details to Appendix A.4 and sketch the argument here.

If RMSProp is oscillating around its time-averaged trajectory {wt}, so that wt = wt + δt, then the time average of
the elementwise squared gradient is approximately:

E[∇L(wt)
⊙2]︸ ︷︷ ︸

time-average of
squared gradient

≈ ∇L(wt)
⊙2︸ ︷︷ ︸

squared gradient at
time-averaged iterate

+diag[H(wt)E[δtδTt]H(wt)]︸ ︷︷ ︸
contribution from oscillations

. (32)

47On a quadratic 1
2
wTHw, this algorithm evolves via: wt+1 = (I − P−1H)wt =⇒ wt = (I − P−1H)w0. If P−1H has any

eigenvalues greater than 2, (I − P−1H) has eigenvalues less than −1, and the iterates diverge along the corresponding right eigenvectors.
48With this argument, we are also implicitly assuming that the preconditioner evolves sufficiently slowly that its movement can be neglected.
49For RMSProp, the effective sharpness eq. (31) tends to rise both because the curvature tends to rise (progressive sharpening) and because

the gradient (and hence ν) tends to shrink. Due to the second effect, RMSProp often enters EOS sooner, and for a large range of learning rates,
than gradient descent. Further, RMSProp enters EOS even on quadratics, whereas gradient descent does not.

26

2000 2100 2200 2300 2400 2500
step / time

0.0

0.5

1.0

1.5
1e 8 gradient2 at one arbitrary coordinate

RMSProp
RMSProp (smoothed)
central flow
central flow
(time-avg prediction)

2000 2100 2200 2300 2400 2500
step / time

1

2

3

4

1e 9 at same coordinate
RMSProp
central flow

Figure 19: Central flow can successfully predict both the time-averaged gradient2 (left) and the EMA ν (right).
On the left, we show that although the squared gradient is fluctuating erratically (recall Figure 17), its time-average
can be predicted by the central flow using eq. (33). On the right, we show that the central flow’s ν(t) accurately tracks
the macroscopic trajectory of the real EMA νt. This figure is in the same setting as Figure 17.

The first term is the squared gradient at the time-averaged iterate; the second term is the contribution to the squared
gradient that originates from oscillating with covariance E[δtδTt].

If we further assume then these oscillations are contained within the right eigenspace of the effective Hessian
diag(η/

√
νt)H(wt) that corresponds to the eigenvalue 2, then the rightmost term simplifies as follows:

E[∇L(wt)
⊙2]︸ ︷︷ ︸

time-average of
squared gradient

≈ ∇L(wt)
⊙2︸ ︷︷ ︸

squared gradient at
time-averaged iterate

+
4ν

η2
⊙ diag[E[δtδTt]]︸ ︷︷ ︸

contribution from oscillations

(33)

Based on this calculation, and on the time-averaged gradient computed in eq. (18), we make the ansatz that the
time-averaged dynamics of wt, νt follow a central flow (w(t), ν(t)) with the functional form:

dw

dt
= − η√

ν
⊙

∇L(w) + 1
2∇⟨Σ(t), H(w)⟩︸ ︷︷ ︸

E[∇L(wt)]

, dν

dt
=

1− β2
β2

∇L(w)⊙2 +
4ν

η2
⊙ diag[Σ(t)]︸ ︷︷ ︸

E[∇L(wt)⊙2]

−ν

. (34)

To determine Σ(t), we impose three conditions on this flow, analogous to those from Section 3.2.2. As before, it can
be shown that there is a unique matrix Σ(t) satisfying these three conditions, and this matrix can be characterized as
the solution to a semidefinite complementarity problem. The RMSProp central flow is defined as eq. (34) with this
value of Σ(t). See Appendix A.4, Definition 9 for a formal statement.

Figure 18 illustrates how this central flow can accurately predict the macroscopic trajectory w(t) of RMSProp, as
well as the covariance Σ(t) with which RMSProp is oscillating around that trajectory.50 Figure 19 shows how the
central flow can accurately predict the time-average of the elementwise squared gradient via eq. (33), as well as the
macroscopic trajectory ν(t) of the EMA. Figure 34(a) and Figure 34(b) in Appendix D show in a variety of deep
learning settings that the central flow can accurately predict the RMSProp loss curve across different learning rates.
Figure 35 and Figure 37 show that the central flow can accurately predict the RMSProp trajectory at different values
of β2 and ϵ, respectively. The full set of raw RMSProp experiments can be found in Appendix E.3.

As with gradient descent, we find that the central flow approximation tends to become less accurate as the learning
rate η grows; see Section 6 for our general discussion about the accuracy of the central flow. In addition, we observe
that the central flow for RMSProp tends to be a bit less accurate overall than that for gradient descent, at least as
measured by weight-space distance between the flow and the discrete optimizer. Finally, we expect the central flow
for RMSProp to break down when β2 becomes too close to zero (i.e. the sign GD limit), as then RMSProp would no
longer resemble preconditioned gradient descent with a slowly-changing preconditioner.

50To match the preconditioned geometry of the optimizer, we assess whether each eigenvalue of P (ν(t))1/2Σ(t)P (ν(t))1/2 accurately
predicts the P -whitened variance of oscillations along the corresponding eigenvector; see eq. (122) in Appendix A.4.

27

500 1000 1500 2000 2500
step

0.80

0.85

0.90

0.95

1.00

co
s(

(t)
,

(w
(t)

))

cosine between (t) and (w(t))

0.998

1.000

500 1000 1500 2000 2500
step

10 13

10 11

10 9

10 7

10 5

10 3

co
or

di
na

te
s o

f

ten coordinates of (t) vs. (w(t))

dots: (t)i

lines: (w(t))i

Figure 20: The EMA ν converges to its stationary value. While running the RMSProp central flow, we compare
the actual EMA ν(t) to its stationary value ν(w(t)) w.r.t the current weights w(t). On the left, we plot the cosine
similarity between ν(t) and ν(w(t)); on the right, we compare ten individual coordinates (colors), spaced uniformly
throughout the network. The plots begin when training enters EOS, just before step 500. Observe that after a bit of
time, the cosine similarity between ν(t) and ν(w(t)) reaches high values (near 1), and the individual coordinates
coincide as well. This figure depicts the same setting as Figure 17; see Figures 42(a) to 43(b) for more settings.

5.3 Understanding RMSProp via its Central Flow

We now interpret the RMSProp central flow to understand the behavior of RMSProp, including how the algorithm
sets its effective step sizes η/

√
ν. Because the dynamics usually transition from stable to EOS early in training, we

focus on the EOS regime.

5.3.1 The stationary preconditioner

Stationarity of ν Unfortunately, even at the edge of stability, ν(t) cannot be expressed as a closed-form function of
w(t) (as it could for Scalar RMSProp in Section 4), and instead remains an independent variable that must be tracked.
This reflects the fact that for any w, there are potentially many values for ν that could stabilize optimization, and the
actual value used by RMSProp depends on the history. Nevertheless, we will now see that under the RMSProp central
flow, ν often implicitly converges to a value that depends on the current w alone.

Intuitively, the RMSProp central flow eq. (34) involves two simultaneous processes of optimization (the w dynamics)
and preconditioner adaptation (the ν dynamics). Suppose that the ν dynamics of preconditioner adaptation occur
fast relative to the w dynamics of optimization, so that ν reaches a stationary point w.r.t the current weights w. In
Proposition 7 we show that for any w, there is in fact a unique ν that satisfies the stationarity condition dν

dt = 0. We call
this unique ν the stationary ν for the weights w, denoted as ν(w). Empirically, we observe that ν(t) usually starts to
attain its stationary value ν(w(t)) at some point during training (after the dynamics have entered EOS), and continues
to match ν(w(t)) thereafter, even as this value evolves. Indeed, Figure 20 illustrates how ν(t) converges to ν(w(t))
both in cosine similarity (left) and coordinate-wise (right). See Figures 42(a) to 43(b) for more settings.51

The stationarity of ν will allow us to reason about RMSProp’s preconditioning strategy with relative ease, i.e. without
needing to account for the history of ν. At any weights w, we can view the corresponding stationary preconditioner
P (w) := diag(

√
ν(w)/η) as “the RMSProp preconditioner” that is implicitly used by RMSProp at weights w. We

will now interpret this preconditioner to gain insight into RMSProp’s preconditioning strategy.

Interpreting the stationary preconditioner In Proposition 6, we show that this stationary preconditioner P (w) :=
diag(

√
ν(w)/η) is, remarkably, the optimal solution to a convex optimization problem over preconditioners:

P (w) := argmin
P diagonal, P⪰0

tr(P) + 1
η2
∥∇L(w)∥2P−1︸ ︷︷ ︸
optimization speed

such that H(w) ⪯ 2P︸ ︷︷ ︸
local stability

. (35)

51Since the speed of the ν dynamics in eq. (34) is controlled by the β2 hyperparameter, one might suspect that ν(t) will converge quicker to
ν(w(t)) when β2 is smaller, and we confirm this in Figure 44. Nevertheless, we emphasize that the quasistationarity of ν w.r.t w empirically
holds even when β2 is relatively large (e.g. 0.99). In keeping with our attitude throughout this paper, we do not claim to have an explanation.

28

1000 1500 2000 2500 3000
steps

10 5

10 4

10 3

op
tim

iza
tio

n
sp

ee
d

L(
w

)
2 P

1

= 2e-05

500 1000 1500 2000 2500 3000
steps

10 5

10 4

10 3

= 4e-05

0 1000 2000 3000
steps

10 5

10 4

10 3

= 0.0001

stationary
preconditioner
first term only
GD

Figure 21: Optimization speeds for various preconditioners. Along the RMSProp central flow for various learning
rates (columns), we assess the efficacy of three different preconditioners P : the RMSProp stationary preconditioner
eq. (35), in blue; a variant eq. (36) with only the first term, in orange; and the preconditioner corresponding to vanilla
gradient descent with the largest locally stable learning rate, i.e. P−1 = (2/S(w)) I , in green. We assess each
preconditioner P by reporting ∥∇L(w)∥2P−1 := ∇L(w)TP−1∇L(w), the instantaneous rate of loss decrease under
preconditioned gradient flow with preconditioner P . Observe that the “first term only” preconditioner (orange) is
much better than the vanilla GD (green) preconditioner, and is also better than the actual stationary preconditioner
(blue). The actual stationary preconditioner (blue) is usually better than vanilla GD (green), but not always, especially
when η is smaller. See Figures 45(a) and 45(b) for more experimental settings.

That is, RMSProp implicitly solves the convex program eq. (35) to compute its preconditioner.52 This is the
precise sense in which RMSProp “adapts” its preconditioner to the local loss landscape.

We can now understand RMSProp’s preconditioning strategy by interpreting the optimization problem eq. (35). The
constraint H(w) ⪯ 2P is equivalent to Seff ≤ 2 and hence stipulates that the preconditioner P should keep RMSProp
locally stable. The first term of the objective, tr(P), is the sum of the inverse effective step sizes. If this were the
only term in the objective, RMSProp’s preconditioning strategy could be simply summarized as maximizing the
harmonic mean of the effective step sizes while maintaining local stability — a sensible preconditioning strategy.
Indeed, consider a variant of eq. (35) with only the first term:

P̂ (w) := argmin
P diagonal, P⪰0

tr(P) such that H(w) ⪯ 2P. (36)

Figure 21 demonstrates that this preconditioner is a substantial improvement over vanilla gradient descent. (We
describe in Appendix A.4.1 how we numerically solve eq. (35) and eq. (36).) Interestingly, if the diagonal constraint
in eq. (36) were removed, and if H(w) were PSD, then the optimization problem eq. (36) would have the closed-form
solution P̂ (w) = 1

2H(w). That is, the preconditioner P would be a scaling of the Hessian, and preconditioned
gradient descent would move in the same direction as Newton’s method.53

However, matters are complicated by the presence of the second term in the eq. (35) objective. The quantity
∥∇L(w)∥2P−1 is the instantaneous rate of loss decrease under preconditioned gradient flow with preconditioner P .
Minimizing this term necessarily acts to slow down optimization.54 Indeed, Figure 21 shows that the stationary
preconditioner eq. (35) underperforms the variant eq. (36) with only the first term.

Since the second term in eq. (35) is proportional to 1
η2

, its influence diminishes as the learning rate hyperparameter
η grows. Indeed, it can be seen in Figure 21 that the performance of the stationary preconditioner tends closer to
that of eq. (36) as the learning rate hyperparameter η is made larger. In the limit of large η, the second term vanishes
entirely, and the stationary preconditioner reduces completely to eq. (36). Interestingly, in this limit, the stationary
preconditioner ceases to depend on η: for example, doubling η will cause ν to quadruple in scale (due to larger

52Interestingly, this SDP is the dual to the max-cut SDP: maxΣ⪰0 ⟨Σ, H⟩ such that Σii = 1 for all i. Thus, this preconditioning strategy
could be described as solving the max-cut SDP with the Hessian as the weight matrix, and using the resulting dual variable as its preconditioner.

53Even if H(w) were not PSD, a similar point would hold: the optimization problem eq. (36) would have the closed-form solution
P̂ = 1

2
ΠS+H(w), where ΠS+ denotes projection onto the cone of positive semidefinite matrices.

54For any w, the optimization speed ∥∇L(w)∥2P−1 must necessarily be smaller (worse) for eq. (36) than for eq. (35).

29

0 200 400 600 800 1000 1200
step

0.0

0.1

0.2

train loss L(w)

0 200 400 600 800 1000 1200
step

200

400

600

800
sharpness S(w)

0 200 400 600 800 1000 1200
step

0.0

0.5

1.0

1.5

harmonic mean of
effective step sizes 1/(i

i /)
RMSProp
central flow
ablation w/o
curvature reg

Figure 22: Implicit curvature regularization accelerates optimization for RMSProp. Starting from the same
initial point, we compare RMSProp (blue) and its central flow (black) to an ablated flow where the implicit curvature
regularization is disabled (red). Relative to this ablated flow, the central flow takes a lower-curvature trajectory
(middle), in which it takes larger steps (right) and optimizes faster (left). The setting is the same as Figure 17.57

oscillations), while keeping the effective step sizes η/
√
ν unchanged. This parallels the situation for Scalar RMSProp

in Section 4, where the effective step size at EOS was 2/S(w), independent of η.

The stationary flow Substituting P into the central flow, we can obtain a stationary flow over w alone:

dw

dt
= −P (w)−1︸ ︷︷ ︸

stationary
preconditioner

[
∇L(w) + 1

2∇w ⟨Σ, H(w)⟩︸ ︷︷ ︸
implicit curvature penalty

]
. (37)

where Σ = Σ(w; η;β2) is defined as the solution to a certain semidefinite complementarity problem (Appendix A.4.1,
Definition 10). This model assumes that the ν dynamics (preconditioner adaptation) happen infinitely fast relative to
the w dynamics (optimization), so that we can treat the preconditioner P as always being fixed at its current stationary
value P (w) (eq. 35). The appeal of this characterization is that it eliminates ν from the picture entirely, and expresses
the time-averaged dynamics of RMSProp as a closed system in w alone.55 Namely, it suggests that the time-averaged
trajectory of RMSProp is equivalent to that of the following simpler-to-understand algorithm:

At each iteration, compute the preconditioner P (w) using eq. (35) and then take a pre-
conditioned gradient step using this preconditioner on a curvature-penalized objective.

Empirically, we find that the stationary flow eq. (37) is often a reasonable model for the RMSProp trajectory. For
example, Figures 46(a) and 46(b) show that the stationary flow can accurately predict the instantaneous rate of loss
decrease at various points along the central flow trajectory, even though it only has access to w(t) and not ν(t).
Meanwhile, Figures 47(a) and 47(b) show that the stationary flow can tolerably predict the trajectory of RMSProp
over moderate timescales, although we note that its accuracy is not as high as the full central flow.56

5.3.2 Acceleration via regularization

As with Scalar RMSProp, we find that RMSProp’s implicit curvature regularization enables it to optimize faster. In
Figure 22, we show that when the curvature regularization is disabled, the RMSProp central flow navigates into in-
creasingly sharp regions, where it takes smaller steps, and optimizes slower (see Figure 41 for more settings).58

Establishing this claim theoretically is more difficult for RMSProp than Scalar RMSProp.59 However, in the limit of

54In this figure, for RMSProp, we show the train loss at the second-order midpoints between iterates (see Appendix B.1).
55This style of argument is referred to as “adiabatic elimination” in physics.
56As one might expect, the stationary flow tends to only be an accurate model for RMSProp once ν has reached stationarity.
58To run this ablated flow, we manually set ∇H(w) = 0 both in the expression for β and in the expression for dw

dt
(see Appendix A.4).

59Partly, the difficulty of analysis is due to the independent ν dynamics. However, this analysis is also not easy under the stationary flow,
because the second term in eq. (35) causes the effective step sizes to depend not just on the current Hessian but also on the current gradient.

30

large η and small β2, it can be argued (Appendix A.4.1) that the stationary flow eq. (37) reduces to:

dw

dt
= −P̂ (w)−1

[
∇L(w) + η2

4
∇ tr P̂ (w)

]
, (38)

where P̂ (w) was defined in eq. (36). This model says that RMSProp implicitly picks the diagonal preconditioner with
minimal trace (equivalently, the preconditioner P where the effective learning rates P−1 have maximal harmonic
mean), and also implicitly moves in a direction in which the trace of this preconditioner will become even smaller.
The strength of the latter effect is controlled by η, and in fact, this is the only means by which the learning rate
hyperparameter η affects the trajectory, since the preconditioner P̂ (w) is independent of η. Thus, as with Scalar
RMSProp, larger learning rates translate to larger steps, but only via this indirect mechanism.

31

6 Experiments

The goal of our experiments is to establish that each central flow accurately approximates the trajectory of its
corresponding optimizer in a variety of deep learning settings, and to understand the circumstances under which
this approximation breaks down. Because it is computationally costly to discretize central flows, we experiment on
small-scale networks and datasets. Note that there is no evidence that scale itself fundamentally affects the dynamics
of optimization in deep learning; for example, EOS dynamics have been observed at both smaller (e.g. CIFAR-10)
and larger (e.g. ImageNet or WMT) scales, without noticeable differences. Therefore, we expect that the central flow
approximation would similarly hold true at larger scales, if such experiments were computationally feasible.

We emphasize that the central flow is a theoretical tool for understanding optimizer behavior, not a practical
optimization method. In practice, maintaining an exponential moving average of the iterates (e.g., Morales-Brotons
et al., 2024) is likely a computational feasible way to estimate the optimizer’s time-averaged trajectory.

Architectures We experiment on a diverse set of six architectures: a convolutional neural network (CNN), a ResNet
(He et al., 2016), a Vision Transformer (ViT) (Dosovitskiy et al., 2021), an LSTM (Hochreiter and Schmidhuber, 1997),
a (sequence) Transformer (Vaswani et al., 2017), and a Mamba sequence model (Gu and Dao, 2024). Architectural
details can be found in Appendix B.2.

Datasets We test the vision architectures (CNN, ResNet, ViT) on a subset of CIFAR-10 (Krizhevsky, 2009), and
the sequence architectures (LSTM, Transformer, Mamba) on a synthetic sorting task (Karpathy, 2020). Further details
on these datasets can be found in Appendix B.3. For each architecture and each dataset, we test both cross-entropy
loss and MSE loss. As discussed below, the central flow tends to be somewhat more accurate with MSE loss.

Implementation Discretizing the central flows is somewhat nontrivial, as the flows are non-smooth at points
where there is a change in the number of unstable eigenvalues (e.g. going from 0 to 1). We describe our solution
in Appendix A.2.4 for gradient descent and in Appendix A.5.1 for a generic (potentially) adaptive optimizer. The
time complexity of each discretization step scales quadratically with the number of eigenvalues that are at the edge
of stability. Most of the computational cost arises from the need to continually re-estimate the top eigenvectors and
eigenvalues of the (effective) Hessian, and to compute the necessary third derivatives (gradients of these eigenvalues).
Full implementation details can be found in Appendix B.1.

Our code can be found at: https://github.com/centralflows/centralflows.

6.1 Experimental Results

To assess the accuracy of the central flow approximation, we run both the discrete optimizer and the central flow
simultaneously, starting from the same initialization. As a baseline, we also run the corresponding stable flow (e.g.
for gradient descent, the gradient flow), which we expect to poorly approximate the discrete optimizer when the latter
is at the edge of stability.

Our full experimental results, which can be found in Appendix E, make clear that the central flow can accurately
approximate the long-term optimization trajectory in a variety of deep learning settings. We find that the weight-space
distance between the discrete optimizer and the central flow generally stays small over time, and is much smaller than
the distance between the discrete optimizer and the stable flow baseline. Meanwhile, the network’s predictions under
the central flow generally match those of the discrete optimizer, whereas the stable flow takes a different path through
function space. The central flow can also accurately predict the time-averaged train loss curve and squared gradient
norm curve, as well as the covariance of the discrete optimizer’s oscillations around the central flow.

That said, the central flow approximation can break down in certain circumstances, which we now describe. An
interesting direction for future work would be to rigorously characterize the conditions under which the central flow
does or does not approximate the real optimizer trajectory.

Sufficiently large learning rates For all three optimizers studied in this paper, we reliably observe that as the
learning rate hyperparameter is made increasingly large, the real optimization trajectory tends to deviate more from

32

https://github.com/centralflows/centralflows

0 1000 2000 3000 4000
step

0.0

0.2

0.4

training loss
= 0.01
= 0.02
= 0.04

central flows

0 1000 2000 3000 4000
step

0.4

0.2

0.0

0.2

network output on test example

0 1000 2000 3000 4000
step

0.0

0.1

0.2

0.3

weight space distance between w(t) and wt

Figure 23: Central flow approximation is less accurate at larger learning rates. We run both gradient descent and
its central flow at three learning rates (colors). The larger the learning rate, the faster the growth in the accumulated
approximation error (right). Indeed, at larger learning rates, the network’s output on an arbitrary test example can be
visually seen to be slightly different between the central flow and gradient descent (middle). Nevertheless, the central
flow approximation is still accurate enough here to accurately capture the train loss curves (left). Details: a CNN is
trained on CIFAR-10 using MSE loss.

the central flow, as illustrated in Figure 23. (As an extreme example, even if the optimizer is initialized stably, very
large learning rates sometimes cause the real optimizer to explosively diverge in the middle of training, whereas this
never happens under the central flow.) We do not know whether some corrected version of the central flow would
be more successful at capturing the real optimization trajectory in these scenarios, or whether the real trajectory is
simply too chaotic to be captured by any flow.

Higher-order terms Sometimes, the local curvature is not well-modeled by the cubic Taylor approximation, as is
assumed by our theory. This leads the central flow to mispredict Σ(t), causing error to accumulate over the long run.
We elaborate on this failure mode in Appendix C.2.

Smoothness of architecture The smoothness of the architecture seems to affect the accuracy of the central flow
approximation; non-smooth components such as ReLU or max pooling often cause the quality of the approximation
to break down. For example, in Figure 38, we show that as a network’s activation function is interpolated from GeLU
(smooth) to ReLU (non-smooth), the accuracy of the central flow approximation degrades, both in weight space and
function space. Note that it is not clear how best to precisely quantify “smoothness” in this context.

Large spikes When the EOS dynamics lead to extremely large spikes (e.g. in the gradient norm), we have found
such spikes can cause the real trajectory to deviate from the central flow, as illustrated in Figure 39. This may be
related to the large learning rate issue described above.

Interactions with loss criterion We have empirically found that the higher-order terms issue and the large spike
issue are more common with cross-entropy loss than with mean squared error loss (although we do not have a
satisfactory explanation for these observations). Consequently, the central flow approximation is often more accurate
under the MSE loss than the cross-entropy loss.

Overall, despite these limitations, we argue that the central flow describes the behavior of the corresponding optimizer
“to a first approximation.” Even in cases where the central flow is not a perfect quantitative match to the discrete
trajectory, it may still capture the important qualitative trends.

33

7 Discussion

7.1 Modeling decisions

Deterministic setting Our analysis is restricted to the simple setting of deterministic (i.e. full-batch) training,
whereas practical deep learning generally involves minibatch training. We study the full-batch setting because, as
the simplest special case, understanding full-batch training is a necessary prerequisite for understanding minibatch
training. However, we also believe that understanding full-batch training might suffice for some practical purposes,
such as designing optimizers. For example, Kunstner et al. (2024) showed that the advantage of adaptive methods over
SGD grows larger with larger batch sizes, suggesting that the relevant algorithmic principles can be best understood
in the deterministic setting.

An interesting direction for future research is to try to extend our central flows methodology to the stochastic setting.
Like deterministic optimizers, stochastic optimizers are known to implicitly regularize the curvature along their
trajectories, and in fact this effect is stronger in the stochastic setting (Keskar et al., 2017; Jastrzębski et al., 2020,
2021; Andreyev and Beneventano, 2024). However, extending the central flows methodology to the stochastic setting
may be nontrivial; due to the randomness, it is not clear whether there exists a deterministic differential equation
around which SGD oscillates. An interesting question is whether there exists a differential equation that can predict
derived metrics such as network predictions or training loss curves, even if it cannot model the weight-space trajectory
of SGD. Finally, while our analysis in this paper sheds light on adaptive optimizers in the deterministic setting, these
optimizers could exhibit substantially different behavior in the stochastic setting.

Black-box model of the loss Our analysis treats the loss function as a black box, and never uses that the optimization
problem at hand involves training a neural network. The advantage of this approach is its generality: we expect
our analysis to apply to generic deep learning architectures and learning problems, including those that do not yet
exist. The disadvantage, however, is that the predictions made by our theory are at the abstraction level of the loss
landscape, and would need to be further translated in order to make concrete claims about the network architecture or
learning problem. For example, our theory tells us that the learning rate hyperparameter modulates the strength of
an implicit sharpness penalty, but does not tell us how this sharpness penalty affects learning. Nor does our theory
shed light on how different layers of the neural network are mechanistically implicated in progressive sharpening or
sharpness reduction.

On the one hand, the loss landscape level of abstraction is in some sense “natural” — the overall path that optimizers
follow really does intrinsically depend on the (effective) sharpness. But on the other hand, understanding many
important aspects of optimization in deep learning will likely require cracking open the black box a bit more.

7.2 Takeaways from our analysis

The unreasonable effectiveness of time-averaging Prior works on EOS show that it is challenging to analyze
the oscillatory EOS dynamics in fine-grained detail. Our work shows that, perhaps surprisingly, simple heuristics
allow us to analyze the time-averaged trajectory with excellent numerical accuracy. Interestingly, the success of this
time-averaging approach seems to imply that the oscillations only affect the macroscopic trajectory in an ergodic
sense, i.e. via their covariance rather than via their fine-grained details. An promising direction for future work is to
identify realistic conditions under which our heuristic time-averaging arguments can be made rigorous.

Necessity of third-order Taylor expansions While optimization theory generally relies on second-order Taylor
expansions of the loss, Damian et al. (2023) showed that a third-order Taylor expansion is necessary for understanding
the convergence of gradient descent; such a Taylor expansion reveals that oscillations implicitly trigger curvature
reduction, a form of negative feedback which stabilizes optimization. In this work, we have shown that a third-order
Taylor expansion is similarly necessary for understanding the acceleration via mechanism which underlies the success
of adaptive optimizers. Thus, our work further underscores the necessity of a third-order Taylor expansion when
analyzing optimization in deep learning.

34

Oscillatory first-order methods are implicitly second-order methods Over the last decade, optimizers that
explicitly use Hessian information have failed to outperform first-order adaptive optimizers which employ only
gradient information. Our work demystifies this observation. We have shown that that when first-order optimizers
oscillate, they implicitly leverage second order information. Thus, even though RMSProp is a first-order optimizer, it
implicitly employs a second-order preconditioning strategy, detailed in Section 5.3.1. Further, this preconditioning
strategy is efficient, requiring no more gradient queries than gradient descent does. An exciting direction for future
work is to intentionally design first-order adaptive methods with such implicit preconditioners in mind.

Adapting to curvature is not enough Traditional optimization theory views the curvature of the loss as a pre-
existing feature of the optimization problem, and views the job of an optimizer as adapting to this pre-existing
curvature. We have shown that the adaptive optimizers that we study do not merely passively adapt to the curvature;
they also actively shape the curvature along their trajectory, by steering away from high-curvature regions where they
would need to take small steps. Further, we have shown that this effect is crucial for their optimization efficacy. Thus,
our work suggests that acceleration via regularization is a vital design principle for adaptive optimizers.

8 Conclusion

In this paper, we have developed a methodology for analyzing deep learning optimizers. To analyze an optimization
algorithm, we derive a central flow which models the optimizer’s time-averaged trajectory, rendering explicit what
was implicit in the oscillatory dynamics. We have empirically shown that these central flows can accurately predict
long-term optimization trajectories of neural networks, and by interpreting these flows we have obtained new insights
about optimizers’ behavior.

These advances are made possible by the fact that we adopt different goals from most works in optimization. Rather
than try to characterize global convergence rates, we set ourselves the more modest goal of characterizing the local
optimization dynamics throughout training. The local dynamics are important, they are more interesting than may
have been assumed (even vanilla gradient descent gives rise to rich, complex dynamics), and they are empirically
consistent across different deep learning settings, which suggests that a general theory is feasible. We believe that
similar analyses can be fruitfully conducted for other optimizers, and we hope to inspire work in that direction.

35

Acknowledgements

AD acknowledges support from an NSF Graduate Research Fellowship and a Jane Street Graduate Research
Fellowship. JDL acknowledges support of Open Philanthropy, NSF IIS 2107304, NSF CCF 2212262, NSF CAREER
Award 2144994, and NSF CCF 2019844. AT acknowledges support from National Science Foundation grants
IIS1705121, IIS1838017, IIS2046613, IIS2112471, and funding from Meta, Morgan Stanley, Amazon, Google, and
Scribe. JC would like to thank Jim and Marilyn Simons for their support of basic research via the Flatiron Institute.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of any of these funding agencies.

The authors are grateful for feedback from Nikhil Ghosh, Yiding Jiang, Sam Sokota, and Zhili Feng.

36

References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL http:
//tensorflow.org/. Software available from tensorflow.org.

A. Agarwala, F. Pedregosa, and J. Pennington. Second-order regression models exhibit progressive sharpening to the
edge of stability. In Proceedings of the 40th International Conference on Machine Learning, ICML’23, 2023.

K. Ahn, S. Bubeck, S. Chewi, Y. T. Lee, F. Suarez, and Y. Zhang. Learning threshold neurons via edge of stability.
Advances in Neural Information Processing Systems, 36, 2024.

A. Andreyev and P. Beneventano. Edge of stochastic stability: Revisiting the edge of stability for sgd. arXiv preprint
arXiv:2412.20553, 2024.

S. Arora, Z. Li, and A. Panigrahi. Understanding gradient descent on the edge of stability in deep learning. In
International Conference on Machine Learning, pages 948–1024. PMLR, 2022.

Z. Bai, Z. Zhou, J. Zhao, X. Li, Z. Li, F. Xiong, H. Yang, Y. Zhang, and Z.-Q. J. Xu. Adaptive preconditioners trigger
loss spikes in adam. arXiv preprint arXiv:2506.04805, 2025.

D. Barrett and B. Dherin. Implicit gradient regularization. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=3q5IqUrkcF.

L. Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Software
available from wandb.com.

G. Blanc, N. Gupta, G. Valiant, and P. Valiant. Implicit regularization for deep neural networks driven by an
ornstein-uhlenbeck like process. In Annual Conference Computational Learning Theory, 2019. URL https:
//api.semanticscholar.org/CorpusID:125944013.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas,
S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

S. Burer and R. D. Monteiro. Local minima and convergence in low-rank semidefinite programming. Mathematical
programming, 103(3):427–444, 2005.

M. D. Cattaneo, J. M. Klusowski, and B. Shigida. On the implicit bias of Adam. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

C. Chen, L. Shen, F. Zou, and W. Liu. Towards practical adam: Non-convexity, convergence theory, and mini-batch
acceleration. Journal of Machine Learning Research, 23(229):1–47, 2022.

L. Chen and J. Bruna. Beyond the edge of stability via two-step gradient updates. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023.

X. Chen, S. Liu, R. Sun, and M. Hong. On the convergence of a class of adam-type algorithms for non-convex
optimization. In International Conference on Learning Representations, 2019a. URL https://openreview.
net/forum?id=H1x-x309tm.

Z. Chen, Z. Yuan, J. Yi, B. Zhou, E. Chen, and T. Yang. Universal stagewise learning for non-convex problems
with convergence on averaged solutions. In International Conference on Learning Representations, 2019b. URL
https://openreview.net/forum?id=Syx5V2CcFm.

37

http://tensorflow.org/
http://tensorflow.org/
https://openreview.net/forum?id=3q5IqUrkcF
https://www.wandb.com/
https://api.semanticscholar.org/CorpusID:125944013
https://api.semanticscholar.org/CorpusID:125944013
http://github.com/jax-ml/jax
https://openreview.net/forum?id=H1x-x309tm
https://openreview.net/forum?id=H1x-x309tm
https://openreview.net/forum?id=Syx5V2CcFm

J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural networks typically occurs at the
edge of stability. In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=jh-rTtvkGeM.

J. M. Cohen, B. Ghorbani, S. Krishnan, N. Agarwal, S. Medapati, M. Badura, D. Suo, D. Cardoze, Z. Nado, G. E.
Dahl, and J. Gilmer. Adaptive gradient methods at the edge of stability. arXiv preprint arXiv:2207.14484, 2022.

E. M. Compagnoni, L. Biggio, A. Orvieto, F. N. Proske, H. Kersting, and A. Lucchi. An sde for modeling sam:
Theory and insights. In International Conference on Machine Learning, pages 25209–25253. PMLR, 2023.

E. M. Compagnoni, T. Liu, R. Islamov, F. N. Proske, A. Orvieto, and A. Lucchi. Adaptive methods through the
lens of SDEs: Theoretical insights on the role of noise. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=ww3CLRhF1v.

B. Cornet. Existence of slow solutions for a class of differential inclusions. Journal of Mathematical Analysis and
Applications, 96(1):130–147, Oct. 1983. ISSN 0022-247X. doi:10.1016/0022-247X(83)90032-X.

M. Crawshaw, M. Liu, F. Orabona, W. Zhang, and Z. Zhuang. Robustness to unbounded smoothness of generalized
signsgd. Advances in Neural Information Processing Systems, 35:9955–9968, 2022.

A. Damian, T. Ma, and J. D. Lee. Label noise sgd provably prefers flat global minimizers. Advances in Neural
Information Processing Systems, 34:27449–27461, 2021.

A. Damian, E. Nichani, and J. D. Lee. Self-stabilization: The implicit bias of gradient descent at the edge of stability.
In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=nhKHA59gXz.

Y. Dauphin, A. Agarwala, and H. Mobahi. How hessian structure explains mysteries in sharpness regularization.
Advances in Neural Information Processing Systems, 37, 2024.

M. K. de Carli Silva and L. Tunçel. Strict complementarity in maxcut sdp, 2018. URL https://arxiv.org/
abs/1806.01173.

A. Défossez, L. Bottou, F. Bach, and N. Usunier. A simple convergence proof of adam and adagrad. Transactions
on Machine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=
ZPQhzTSWA7.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization.
Journal of machine learning research, 12(7), 2011.

O. Elkabetz and N. Cohen. Continuous vs. discrete optimization of deep neural networks. Advances in Neural
Information Processing Systems, 34:4947–4960, 2021.

M. Even, S. Pesme, S. Gunasekar, and N. Flammarion. (s)gd over diagonal linear networks: implicit bias, large
stepsizes and edge of stability. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, 2024.

J. Geiping, M. Goldblum, P. Pope, M. Moeller, and T. Goldstein. Stochastic training is not necessary for generalization.
In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=ZBESeIUB5k.

38

https://openreview.net/forum?id=jh-rTtvkGeM
https://openreview.net/forum?id=jh-rTtvkGeM
https://openreview.net/forum?id=ww3CLRhF1v
https://doi.org/10.1016/0022-247X(83)90032-X
https://openreview.net/forum?id=nhKHA59gXz
https://openreview.net/forum?id=nhKHA59gXz
https://arxiv.org/abs/1806.01173
https://arxiv.org/abs/1806.01173
https://openreview.net/forum?id=ZPQhzTSWA7
https://openreview.net/forum?id=ZPQhzTSWA7
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=ZBESeIUB5k
https://openreview.net/forum?id=ZBESeIUB5k

A. Ghosh, H. Lyu, X. Zhang, and R. Wang. Implicit regularization in heavy-ball momentum accelerated stochastic
gradient descent. In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=ZzdBhtEH9yB.

M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. In First Conference on
Language Modeling, 2024. URL https://openreview.net/forum?id=tEYskw1VY2.

Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. A novel convergence analysis for algorithms of the adam family. arXiv
preprint arXiv:2112.03459, 2021.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 1997.

Y. Hong and J. Lin. On convergence of adam for stochastic optimization under relaxed assumptions. Advances in
Neural Information Processing Systems, 37:10827–10877, 2024.

F. Hübler, J. Yang, X. Li, and N. He. Parameter-agnostic optimization under relaxed smoothness. In International
Conference on Artificial Intelligence and Statistics, pages 4861–4869. PMLR, 2024.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
In International conference on machine learning, pages 448–456. pmlr, 2015.

S. Jastrzębski, Z. Kenton, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. On the relation between the sharpest
directions of DNN loss and the SGD step length. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=SkgEaj05t7.

S. Jastrzębski, M. Szymczak, S. Fort, D. Arpit, J. Tabor, K. Cho*, and K. Geras*. The break-even point on
optimization trajectories of deep neural networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=r1g87C4KwB.

S. Jastrzębski, D. Arpit, O. Astrand, G. B. Kerg, H. Wang, C. Xiong, R. Socher, K. Cho, and K. J. Geras. Catastrophic
fisher explosion: Early phase fisher matrix impacts generalization. In International Conference on Machine
Learning, pages 4772–4784. PMLR, 2021.

A. Karpathy. mingpt - demo.ipynb. https://github.com/karpathy/minGPT/blob/master/demo.
ipynb, 2020.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training for deep learning:
Generalization gap and sharp minima. In International Conference on Learning Representations, 2017.

A. Khaled, K. Mishchenko, and C. Jin. Dowg unleashed: An efficient universal parameter-free gradient descent
method. Advances in Neural Information Processing Systems, 36:6748–6769, 2023.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate
gradient method. SIAM Journal on Scientific Computing, 23(2):517–541, 2001.

39

https://openreview.net/forum?id=ZzdBhtEH9yB
https://openreview.net/forum?id=ZzdBhtEH9yB
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=SkgEaj05t7
https://openreview.net/forum?id=r1g87C4KwB
https://github.com/karpathy/minGPT/blob/master/demo.ipynb
https://github.com/karpathy/minGPT/blob/master/demo.ipynb
http://arxiv.org/abs/1412.6980

I. Kreisler, M. S. Nacson, D. Soudry, and Y. Carmon. Gradient descent monotonically decreases the sharpness of
gradient flow solutions in scalar networks and beyond. In International Conference on Machine Learning, pages
17684–17744. PMLR, 2023.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.

F. Kunstner, P. Hennig, and L. Balles. Limitations of the empirical fisher approximation for natural gradient descent.
Advances in Neural Information Processing Systems, 32, 2019.

F. Kunstner, R. Yadav, A. Milligan, M. Schmidt, and A. Bietti. Heavy-tailed class imbalance and why adam
outperforms gradient descent on language models. In Neural Information Processing Systems, 2024.

A. Lewkowycz, Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari. The large learning rate phase of deep learning:
the catapult mechanism. arXiv preprint arXiv:2003.02218, 2020.

H. Li and Z. Lin. On the O(
√
d/t1/4) convergence rate of RMSProp and its momentum extension measured by l1

norm: Better dependence on the dimension. arXiv preprint arXiv:2402.00389, 2024.

H. Li, A. Rakhlin, and A. Jadbabaie. Convergence of adam under relaxed assumptions. Advances in Neural
Information Processing Systems, 36, 2024.

Q. Li, C. Tai, and W. E. Stochastic modified equations and adaptive stochastic gradient algorithms. In Proceedings of
the 34th International Conference on Machine Learning, 2017.

X. Li, Z.-Q. J. Xu, and Z. Zhang. Loss spike in training neural networks. arXiv preprint arXiv:2305.12133, 2023.

Y. Li, C. Wei, and T. Ma. Towards explaining the regularization effect of initial large learning rate in training neural
networks. Advances in Neural Information Processing Systems, 32, 2019.

Z. Li, S. Malladi, and S. Arora. On the validity of modeling SGD with stochastic differential equations (SDEs). In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=goEdyJ_nVQI.

Z. Li, T. Wang, and S. Arora. What happens after SGD reaches zero loss? –a mathematical framework. In
International Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
id=siCt4xZn5Ve.

Z. Li, Z. Wang, and J. Li. Analyzing sharpness along gd trajectory: Progressive sharpening and edge of stability. In
Neural Information Processing Systems, 2022b.

Y. Liu, Z. Liu, and J. Gore. Focus: First order concentrated updating scheme. arXiv preprint arXiv:2501.12243,
2025a.

Z. Liu, Y. Liu, J. Gore, and M. Tegmark. Neural thermodynamic laws for large language model training, 2025b. URL
https://arxiv.org/abs/2505.10559.

LucidRains. Vision transformer - pytorch. https://github.com/lucidrains/vit-pytorch, 2024.

K. Lyu, Z. Li, and S. Arora. Understanding the generalization benefit of normalization layers: Sharpness reduction.
Advances in Neural Information Processing Systems, 35:34689–34708, 2022.

C. Ma, L. Wu, and E. Weinan. A qualitative study of the dynamic behavior for adaptive gradient algorithms. In
Mathematical and Scientific Machine Learning, pages 671–692. PMLR, 2022.

40

https://openreview.net/forum?id=goEdyJ_nVQI
https://openreview.net/forum?id=siCt4xZn5Ve
https://openreview.net/forum?id=siCt4xZn5Ve
https://arxiv.org/abs/2505.10559
https://github.com/lucidrains/vit-pytorch

S. Malladi, K. Lyu, A. Panigrahi, and S. Arora. On the sdes and scaling rules for adaptive gradi-
ent algorithms. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, edi-
tors, Advances in Neural Information Processing Systems, volume 35, pages 7697–7711. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
32ac710102f0620d0f28d5d05a44fe08-Paper-Conference.pdf.

J. Martens. New insights and perspectives on the natural gradient method. Journal of Machine Learning Research, 21
(146):1–76, 2020. URL http://jmlr.org/papers/v21/17-678.html.

A. Mishkin, A. Khaled, Y. Wang, A. Defazio, and R. M. Gower. Directional smoothness and gradient methods:
Convergence and adaptivity. Advances in Neural Information Processing Systems, 2024.

D. Morales-Brotons, T. Vogels, and H. Hendrikx. Exponential moving average of weights in deep learn-
ing: Dynamics and benefits. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=2M9CUnYnBA.

J.-J. Moreau. Décomposition orthogonale d’un espace hilbertien selon deux cones mutuellement polaires. Comptes
Rendus de l’Académie des Sciences, 255:238–240, 1962.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML), 2010.

F. Orabona. Neural networks (maybe) evolved to make adam the best optimizer. https://parameterfree.
com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/,
2020. Accessed: October 17, 2024.

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=ryQu7f-RZ.

M. Rosca, Y. Wu, C. Qin, and B. Dherin. On a continuous time model of gradient descent dynamics and instability
in deep learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://
openreview.net/forum?id=EYrRzKPinA.

E. Rosenfeld and A. Risteski. Outliers with opposing signals have an outsized effect on neural network optimization.
In The Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=kIZ3S3tel6.

V. Roulet, A. Agarwala, J.-B. Grill, G. M. Swirszcz, M. Blondel, and F. Pedregosa. Stepping on the edge: Curvature
aware learning rate tuners. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=SEflLHIhhJ.

M. Sandler, A. Zhmoginov, M. Vladymyrov, and N. Miller. Training trajectories, mini-batch losses and the curious
role of the learning rate, 2023. URL https://arxiv.org/abs/2301.02312.

N. Shi, D. Li, M. Hong, and R. Sun. RMSprop converges with proper hyper-parameter. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=3UDSdyIcBDA.

S. L. Smith, B. Dherin, D. Barrett, and S. De. On the origin of implicit regularization in stochastic gradient descent.
In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=rq_Qr0c1Hyo.

M. Song and C. Yun. Trajectory alignment: Understanding the edge of stability phenomenon via bifurcation theory.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=PnJaA0A8Lr.

41

https://proceedings.neurips.cc/paper_files/paper/2022/file/32ac710102f0620d0f28d5d05a44fe08-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/32ac710102f0620d0f28d5d05a44fe08-Paper-Conference.pdf
http://jmlr.org/papers/v21/17-678.html
https://openreview.net/forum?id=2M9CUnYnBA
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=EYrRzKPinA
https://openreview.net/forum?id=EYrRzKPinA
https://openreview.net/forum?id=kIZ3S3tel6
https://openreview.net/forum?id=kIZ3S3tel6
https://openreview.net/forum?id=SEflLHIhhJ
https://arxiv.org/abs/2301.02312
https://openreview.net/forum?id=3UDSdyIcBDA
https://openreview.net/forum?id=rq_Qr0c1Hyo
https://openreview.net/forum?id=rq_Qr0c1Hyo
https://openreview.net/forum?id=PnJaA0A8Lr
https://openreview.net/forum?id=PnJaA0A8Lr

D. E. Stewart. Dynamics with Inequalities. Society for Industrial and Applied Mathematics,
2011. doi:10.1137/1.9781611970715. URL https://epubs.siam.org/doi/abs/10.1137/1.
9781611970715.

T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2):26, 2012.

A. Torres-Leguet. mamba.py. https://github.com/alxndrTL/mamba.py, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all
you need. Advances in Neural Information Processing Systems, 30, 2017.

B. Wang, J. Fu, H. Zhang, N. Zheng, and W. Chen. Closing the gap between the upper bound and lower bound of
adam’s iteration complexity. Advances in Neural Information Processing Systems, 36, 2024a.

B. Wang, H. Zhang, Q. Meng, R. Sun, Z.-M. Ma, and W. Chen. On the convergence of adam under non-uniform
smoothness: Separability from sgdm and beyond. arXiv preprint arXiv:2403.15146, 2024b.

B. Wang, Y. Zhang, H. Zhang, Q. Meng, R. Sun, Z.-M. Ma, T.-Y. Liu, Z.-Q. Luo, and W. Chen. Provable adaptivity
of adam under non-uniform smoothness. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. Association for Computing Machinery, 2024c. ISBN 9798400704901.

M. Wang, J. Wang, H. He, Z. Wang, G. Huang, F. Xiong, Z. li, W. E, and L. Wu. Improving generalization and
convergence by enhancing implicit regularization. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024d. URL https://openreview.net/forum?id=cjM2bhLOiC.

K. Wen, Z. Li, J. S. Wang, D. L. W. Hall, P. Liang, and T. Ma. Understanding warmup-stable-decay learning rates: A
river valley loss landscape view. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=m51BgoqvbP.

J. Wu, V. Braverman, and J. D. Lee. Implicit bias of gradient descent for logistic regression at the edge of stability.
Advances in Neural Information Processing Systems, 36, 2024.

L. Wu, C. Ma, and W. E. How sgd selects the global minima in over-parameterized learning: A dy-
namical stability perspective. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
6651526b6fb8f29a00507de6a49ce30f-Paper.pdf.

Y. Wu and K. He. Group normalization. In Proceedings of the European conference on computer vision (ECCV),
pages 3–19, 2018.

C. Xing, D. Arpit, C. Tsirigotis, and Y. Bengio. A walk with sgd. arXiv preprint arXiv:1802.08770, 2018.

J. Yang, X. Li, I. Fatkhullin, and N. He. Two sides of one coin: the limits of untuned sgd and the power of adaptive
methods. Advances in Neural Information Processing Systems, 36, 2024.

M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex optimization. Advances in
Neural Information Processing Systems, 31, 2018.

Q. Zhang, Y. Zhou, and S. Zou. Convergence guarantees for RMSProp and adam in generalized-smooth non-convex
optimization with affine noise variance. Transactions on Machine Learning Research, 2025. ISSN 2835-8856.
URL https://openreview.net/forum?id=QIzRdjIWnS.

Y. Zhang, C. Chen, N. Shi, R. Sun, and Z.-Q. Luo. Adam can converge without any modification on update rules.
Advances in Neural Information Processing Systems, 35:28386–28399, 2022.

42

https://doi.org/10.1137/1.9781611970715
https://epubs.siam.org/doi/abs/10.1137/1.9781611970715
https://epubs.siam.org/doi/abs/10.1137/1.9781611970715
https://github.com/alxndrTL/mamba.py
https://openreview.net/forum?id=cjM2bhLOiC
https://openreview.net/forum?id=m51BgoqvbP
https://proceedings.neurips.cc/paper_files/paper/2018/file/6651526b6fb8f29a00507de6a49ce30f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/6651526b6fb8f29a00507de6a49ce30f-Paper.pdf
https://openreview.net/forum?id=QIzRdjIWnS

X. Zhu, Z. Wang, X. Wang, M. Zhou, and R. Ge. Understanding edge-of-stability training dynamics with a
minimalist example. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=p7EagBsMAEO.

F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu. A sufficient condition for convergences of adam and rmsprop. In
Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pages 11127–11135, 2019.

43

https://openreview.net/forum?id=p7EagBsMAEO

A Central Flow Derivations

In this appendix, we derive central flows for the three optimizers studied in this paper: gradient descent (Appendix A.2),
Scalar RMSProp (Appendix A.3), and RMSProp (Appendix A.4). We reiterate that these derivations rely on informal
mathematical reasoning; our claim that the central flow accurately matches the optimizer trajectory is ultimately
supported empirically by the experiments described in Section 6. An interesting direction for future work is to prove
that, under realistic conditions, the discrete optimizer follows the central flow.

A.1 Preliminaries

A.1.1 Notation

We use L(w) to denote the training objective, a function of weights w ∈ Rd. We will assume that L is three-times
differentiable. We will frequently use H(w) as a shorthand for∇2L(w), the Hessian matrix at w.

We use ⟨A,B⟩ to denote the Frobenius inner product tr
(
A⊤B

)
between two matrices A and B, equivalent to flattening

the matrices into vectors and taking the dot product. We use ker and span to denote the kernel and span of a matrix,
and dim to denote the dimension of a vector space.

We use Sym(Rd) to denote the set of d × d symmetric matrices. For a k-dimensional subspace U ⊆ Rd, we use
Sym(U) to denote the set of d× d symmetric matrices whose span is contained within U . Equivalently, this is the set
of matrices that can be written as UXU⊤, where U ∈ Rd×k is a basis for U and X ∈ Sym(Rk).

For a subspace U ⊆ Rd and a matrix A ∈ Rd×d, we use A
∣∣
U to denote the restriction of A to U , that is,

A
∣∣
U := ΠU AΠU , (39)

where ΠU is the matrix that projects onto U , e.g. ΠU = UU⊤ for any orthogonal basis U of U .

For a subspace U ⊆ Rd and a matrix A ∈ Sym(Rd), we write A ⪰U 0 to denote that A is positive semidefinite (PSD)
over the subspace U , i.e. u⊤Au ≥ 0 ∀u ∈ U , or equivalently, A

∣∣
U ⪰ 0. We analogously define A ⪯U 0 to mean

that A is negative semidefinite (NSD) over U .

We will need to work with higher-order tensors, though we will try our best to keep the tensor notation at a minimum.
For an order-k tensor T and an order-s tensor X , with s < k, we define the contraction T [X] as the order-(k − s)
tensor obtained by multiplying T and X componentwise along the last s coordinates of T and all coordinates of X ,
and then summing over those coordinates.

(T [X])i1,...,ik−s
:=

∑
j1,...,js

Ti1,...,ik−s,j1,...,js Xj1,...,js .

We will also write T [u1, . . . , us] for the result of contracting T sequentially with the vectors u1, . . . , us one at a time,
equivalent to T [u1 ⊗ . . .⊗ us]. When T is fully symmetric, permuting u1, . . . , us does not change the result.

It can be helpful to reshape a higher-order tensor into a matrix; this viewpoint lets us work with higher-order tensors
while using the familiar language of linear algebra. For example, consider ∇3L(w), the order-3 tensor of third
derivatives. By flattening together the first two dimensions, we could view this as a matrix of shape Rd2×d. In tensor
product notation, we are identifying ∇3L as an element of Rd2 ⊗ Rd. (We note that understanding tensor product
notation is not necessary for understanding this paper.) One could similarly identify∇3L as an element of Rd×d⊗Rd

or Sym(Rd) ⊗ Rd. These views naturally correspond to linear operators; for example, an element of the tensor
product space Sym(Rd)⊗ Rd can be treated as a linear operator Rd → Sym(Rd). We will switch freely among the
full-tensor, tensor-product, and operator views as convenient.

In particular, we will use the notation ∇H(w) ∈ Sym(Rd) ⊗ Rd to denote the reshaping of ∇3L(w) that collects

44

together the first two indices (i.e. the “gradient of the Hessian”):

∇H(w)ij,p := ∇3L(w)ijp =
∂Hij(w)

∂wp
.

Intuitively, for any direction v ∈ Rd, the operator ∇H(w) : Rd → Sym(Rd) returns the directional derivative of the
Hessian H(w) when moving in the direction v:

[∇H(w)[v]]ij =
d∑

p=1

∂Hij(w)

∂wp
vp.

Meanwhile, for any matrix Σ ∈ Sym(Rd), the transpose operator∇H(w)⊤ : Sym(Rd)→ Rd returns the gradient of
the Σ-weighted Hessian ⟨Σ, H(w)⟩:

[
∇H(w)⊤[Σ]

]
p
=

d∑
i=1

d∑
j=1

∂Hij(w)

∂wp
Σij =⇒ ∇H(w)⊤[Σ] = ∇w ⟨Σ, H(w)⟩ .

For a vector space V , we abbreviate V ⊗ V as V ⊗2, e.g. we abbreviate Sym(Rd)⊗ Sym(Rd) as Sym(Rd)⊗2.

A.1.2 Third-order Taylor expansions

If L : Rd → R is k-times differentiable, then Taylor’s theorem for the k-th order Taylor expansion of L is:

L(w + δ) =

k∑
j=0

1

j!
∇jL(w)[δ⊗j] + o(∥δ∥k).

In particular, the third-order Taylor expansion of L around any w ∈ Rd is given by:

L(w + δ) = L(w) +∇L(w)[δ] + 1
2∇

2L(w)[δ, δ] + 1
6∇

3L(w)[δ, δ, δ] + o(∥δ∥3). (40)

Likewise, the second-order Taylor expansion of the gradient ∇L around w is:

∇L(w + δ) = ∇L(w) +∇2L(w)[δ] + 1
2∇

3L(w)[δ, δ] + o(∥δ∥2). (41)

Since ∇3L(w)[δ, δ] = ∇3L(w)[δδ⊤], and recalling our H , ∇H notation from the preceding section, we can
equivalently write this Taylor expansion in the form:

∇L(w + δ) = ∇L(w) +H(w)[δ] + 1
2∇H(w)⊤[δδ⊤] + o(∥δ∥2). (42)

This is the form that we will directly use in our central flow derivations.

A.1.3 Complementarity

A complementarity relation is a constraint on two non-negative variables which enforces that at least one of the
variables is zero, i.e. both cannot be strictly positive. An example is the following set of three conditions over the two
scalar-valued variables x, y ∈ R:

x ≥ 0, y ≥ 0, xy = 0. (43)

By convention, such a condition is often abbreviated using the shorthand notation:

0 ≤ x ⊥ y ≥ 0. (44)

45

Complementarity relations can be extended to vectors and matrices. We will be particularly interested in the matrix
case. For two symmetric matrices X,Y ∈ Sym(Rd), consider the following complementarity relation:

X ⪰ 0, Y ⪰ 0, ⟨X,Y ⟩ = 0, (45)

which we will often abbreviate using the shorthand:

0 ⪯ X ⊥ Y ⪰ 0. (46)

This condition is equivalent to X,Y being PSD with orthogonal spans (Appendix A.5, Fact 2). It is also equivalent to
X,Y being PSD with spanX ⊆ kerY (Appendix A.5, Corollary 1).

A.1.4 Semidefinite complementarity problems

The semidefinite complementarity problem (SDCP) will be a recurring primitive throughout this work. An SDCP
asks to find a matrix Σ ∈ Sym(Rd) that is complementary to an affine function of itself. Namely, let α ∈ Sym(Rd)
be a symmetric matrix and let β ∈ Sym(Rd)⊗2 be a tensor, viewed as a linear operator over symmetric matrices
Sym(Rd)→ Sym(Rd). The semidefinite complementarity problem is to find a matrix Σ ∈ Sym(Rd) such that:

0 ⪯ Σ ⊥ α+ β[Σ] ⪰ 0. (47)

This is a generalization of the well-studied linear complementarity problem from vectors in the non-negative orthant
to matrices in the positive semidefinite cone.

Remark 1. It is easily verified that if β−1[−α] ⪰ 0, then the linear inverse Σ = β−1[−α] is a solution to the SDCP
eq. (47). Interestingly, along the central flows, this will be the solution to the SDCP at almost all times.

Remark 2. In the scalar-valued case, where α, β ∈ R, one can verify by case-checking that the SDCP

0 ≤ σ2 ⊥ α+ βσ2 ≥ 0 (48)

has the closed-form solution σ2 = max(−α
β , 0) provided that β > 0.

It will be useful to restrict the domain of an SDCP to an arbitrary subspace U ⊆ Rd. Recall that we use Sym(U) to
denote the set of symmetric matrices whose span is contained within U . We thus have the following definition:

Definition 1 (Semidefinite Complementarity Problem). For a subspace U ⊆ Rd, matrix α ∈ Sym(U), and tensor
β ∈ Sym(U)⊗2, we define the solution set of the SDCP as:

SDCPU (α, β) := {Σ ∈ Sym(U) : 0 ⪯ Σ ⊥ α+ β[Σ] ⪰U 0}. (49)

A priori, it is unclear whether the SDCP has zero, one, or many solutions. The following lemma shows that the SDCP
always has one unique solution if β is symmetric and positive definite as an operator over Sym(U), i.e if:

β[Σ,Σ′] = β[Σ′,Σ] ∀Σ,Σ′ ∈ Sym(U) and β[Σ,Σ] > 0 ∀Σ ∈ Sym(U)\{0}.

Lemma 1. If β is symmetric and positive definite over Sym(U), then the cardinality of the solution set satisfies
|SDCPU (α, β)| = 1.

Proof. Consider the following quadratic program with a semidefinite constraint:

min
Σ∈Sym(U)

⟨α,Σ⟩+ 1
2β[Σ,Σ] subject to Σ ⪰ 0. (50)

As β ≻ 0, the objective is strictly convex so there is a unique minimizer Σ⋆. The KKT conditions for Σ⋆ are exactly
0 ⪯ Σ⋆ ⊥ α + β[Σ⋆] ⪰ 0 and Σ ∈ Sym(U), so Σ⋆ ∈ SDCPU (α, β). Similarly if Σ ∈ SDCPU (α, β) then Σ
satisfies the KKT conditions for the strictly convex semidefinite quadratic program, so Σ = Σ⋆.

46

Note that this lemma is a straightforward adaptation of a standard argument for linear complementarity problems.
In the case where the lemma applies and the solution to the SDCP is unique, we will overload notation and use
SDCPU (α, β) to denote this unique solution.

Efficient computation Fortunately, solving SDCPU (α, β) does not actually require materializing α ∈ Sym(Rd)
and β ∈ Sym(Rd)⊗2 in full. Let k := dimU denote the dimension of U , which is typically≪ d, and let U ∈ Rd×k

denote a basis for U . Then any Σ ∈ Sym(U) can be expressed as Σ = UXU⊤ for some X ∈ Sym(Rk). The SDCP
condition eq. (49) then reduces to a k-dimensional SDCP over Rk:

0 ⪯ X ⊥ αU + βU [X] ⪰ 0 ⇐⇒ X ∈ SDCPRk(αU , βU), (51)

where the matrix αU ∈ Sym(Rk) is defined as:

αU := U⊤αU ⇐⇒ (αU)ij = uTi αuj (52)

and the tensor βU ∈ Sym(Rk)⊗2 is defined via its action as:

βU [X] := U⊤β[UXU⊤]U ⇐⇒ (βU)ijpq = β[ui, uj , up, uq]. (53)

Thus, to solve the original d-dimensional problem Σ ∈ SDCPU (α, β), one can instead solve the k-dimensional
problem X ∈ SDCPRk(αU , βU), and then represent Σ = UXU⊤.

To solve SDCPRk(αU , βU), we use a standard convex solver to solve the convex program eq. (50):

min
X∈Sym(Rk)

⟨αU , X⟩+ 1
2βU [X,X] subject to X ⪰ 0. (54)

A.1.5 On local time averaging

We intentionally do not specialize to a specific notion of “local time-average”. The only properties of the local
time-averaging operator E that we use are:

1. linearity, i.e. E[f + g] = E[f] + E[g] and E[cf] = cE[f] for any constant c

2. the local time average of a constant c is itself: E[c] = c

3. in the EOS regime when the sharpness fluctuates around 2/η, the time-average is coarse enough to smooth out
these fluctuations so that S(E[wt]) = 2/η

One reason why we do not further define the time-averaging operator is that even the appropriate timescale for the
averaging operation (e.g. window size or kernel bandwidth) depends nontrivially on the local dynamics. Recall that in
the relatively simple setting of one unstable eigenvalue that was analyzed in Damian et al. (2023), the EOS dynamics
consists of consecutive cycles where the sharpness rises above, then falls below, the critical threshold 2/η. In this
setting, it is natural to choose an averaging timescale so as to average over a cycle. Yet, the analysis of Damian
et al. (2023) shows that the length of the cycle depends on the initial position of the iterate along the top Hessian
eigenvector at the instant where the sharpness crosses 2/η (the closer the iterate is to the directionwise optimum, the
longer the cycle). Hence, even the choice of timescale is very nontrivial.

A.1.6 Smoothness of the central flows

Central flows are ordinary differential equations of the form: dw(t)
dt = f(w), where f is not continuous everywhere.

Thus, the ODE should be interpreted in the sense of Carathéodory: w(t) is only differentiable at almost all t, and can
have points of non-differentiability where the left and right derivatives differ. For example, at the instant when the
gradient descent central flow first reaches EOS, the right and left derivatives of w(t) will differ, as the left derivative
is −η∇L(w) while the right derivative is −ηΠ⊥

∇S(w)∇L(w). However, the central flow is right-differentiable for all

t. Therefore, when we write d
dt (e.g. in Proposition 1), it can either be interpreted as holding for almost all t, or it can

be alternatively interpreted as a statement about the right derivative.

47

A.2 Gradient Descent

We now derive the central flow for gradient descent. In Section 3.2.1 we considered the special case where one
eigenvalue is at the edge of stability, and is continuing to remain there. The complete central flow, derived here,
applies in the more general setting where multiple eigenvalues are potentially at the edge of stability. It also allows
eigenvalues to enter and leave the edge of stability when appropriate.

This section is structured as follows:

1. First, in Appendix A.2.1, we formulate the central flow as a differential complementarity problem (DCP): a
dynamical system defined implicitly by combining differential equations with complementarity constraints.

2. Next, in Appendix A.2.2, we show that this DCP can be re-formulated into an ordinary differential equation
with an explicit right-hand side that involves the solution to a semidefinite complementarity problem.

3. In Appendix A.2.3, we show that the central flow can be equivalently formulated as a projected gradient
flow that projects the negative gradient onto the tangent cone of the stable region. Leveraging this projection
interpretation, we prove that the central flow decreases the loss monotonically (Proposition 1), but at a slower
rate than the unregularized gradient flow (Proposition 2).

4. Finally, in Appendix A.2.4, we describe how to discretize the central flow in practice.

A.2.1 The Differential Complementarity Problem (DCP) formulation

The central flow w(t) will model the time-averaged trajectory of gradient descent {wt}:

w(t) := E[wt]. (55)

Let δt := wt − w(t) denote the displacement between gradient descent and the central flow (i.e. “the oscillation”) at
step/time t. From the definition of w(t) as the time-average, it follows that E[δt] = 0. Let Σ(t) := E[δtδ⊤t] denote
the covariance of these oscillations. That is, we are modeling the gradient descent trajectory as:

wt = w(t) + δt, where E[δt] = 0 and E[δtδ⊤t] = Σ(t). (56)

Recall that gradient descent oscillates along the eigenvectors that are at the edge of stability. When the Hessian
has multiple eigenvalues at 2/η, the corresponding eigenvectors are not individually identifiable, since any linear
combination of eigenvectors is also an eigenvector. Instead, what is identifiable is the corresponding eigenspace, i.e.
the linear subspace comprising all such eigenvectors. We refer to this eigenspace as the critical subspace:

Definition 2 (Critical subspace for gradient descent). Given weights w ∈ Rd, the critical subspace U(w) ⊆ Rd is
defined as the Hessian’s eigenspace corresponding to the eigenvalue 2/η:

U(w) := ker
[
H(w)− 2

η I
]
=
{
u ∈ Rd : H(w)u = 2

ηu
}
. (57)

Thus, we assume that the oscillations {δt} are fully contained within the critical subspace:

δt ∈ U(w(t)) ⇐⇒ span[Σ(t)] ⊆ U(w(t)). (58)

We will now derive the central flow. By Taylor expansion of ∇L around w(t) (see Appendix A.1.2, eq. (42)), the
gradient at step t is:

∇L(wt) ≈ ∇L(w(t)) +H(w(t))δt +
1
2∇H(w(t))⊤[δtδ

⊤
t]. (59)

Time-averaging both sides and using that E[δt] = 0 and E[δtδ⊤t] = Σ(t) gives:

E[∇L(wt)] ≈ ∇L(w(t)) + 1
2∇H(w(t))⊤[Σ(t)]. (60)

48

Therefore, we make the ansatz that the central flow w(t) takes the form:

dw

dt
= −η

[
∇L(w) + 1

2∇H(w)⊤[Σ(t)]
]
, (61)

for some unknown Σ(t) which we will now determine.

To solve for Σ(t), we impose three conditions for all times t:

1. PSD: As a covariance matrix, Σ(t) is positive semidefinite (PSD): Σ(t) ⪰ 0.

2. Stability: The sharpness remains bounded by 2/η: H(w(t)) ⪯ (2/η)I .

3. Complementarity: The oscillations are contained within the critical subspace: span[Σ(t)] ⊆ U(w(t)).

It will now be helpful to define the “residual” matrix A(w) as:

A(w) := 2
η I −H(w). (62)

Notably, kerA(w) is precisely the critical subspace U(w), i.e. the eigenspace of H(w) with eigenvalue 2/η. With
this notation, Conditions 1-3 can be expressed as:

Σ(t) ⪰ 0︸ ︷︷ ︸
PSD

, A(w(t)) ⪰ 0︸ ︷︷ ︸
stability

, span[Σ(t)] ⊆ kerA(w(t))︸ ︷︷ ︸
complementarity

. (63)

As discussed in Appendix A.1.3, these three conditions are equivalent to the complementarity relation:

Σ(t) ⪰ 0, A(w(t)) ⪰ 0, Σ(t) ⊥ A(w(t)), (64)

which we write more compactly as:

0 ⪯ Σ(t) ⊥ A(w(t)) ⪰ 0. (65)

We say (w(t),Σ(t)) follow the central flow if they satisfy eq. (61) along with this complementarity relation:60

Definition 3 (Gradient Descent Central Flow, DCP Formulation). We say that {(w(t),Σ(t))}t≥0 follow the gradient
descent central flow if, for almost all t, they satisfy eq. (61) along with the conditions: 0 ⪯ Σ(t) ⊥ A(w(t)) ⪰ 0,
where A(w) := 2

η I −H(w).

Definition 3 is an example of a differential complementarity problem (DCP) (Stewart, 2011), which are described
in more detail in Appendix A.6. In a DCP, Σ(t) is not defined explicitly, but is rather defined implicitly via a
complementarity relation that the trajectory (w(t),Σ(t)) is required to satisfy.

A priori, it is not clear that a feasible Σ(t) exists or is unique. To give an explicit expression for Σ(t), and thereby
turn Definition 3 into an ODE with an explicit right-hand side, we will next show that for almost all times t, Σ(t)
must be the unique solution to a certain semidefinite complementary problem.

A.2.2 The Ordinary Differential Equation (ODE) formulation

Before deriving the ODE formulation of the central flow, let us first explain why the DCP formulation, Definition 3,
fails to immediately specify Σ(t). At any instant t, there can be multiple Σ’s which satisfy 0 ⪯ Σ ⊥ A(w(t)) ⪰ 0;
for example, the trivial choice Σ = 0 always works. Yet, most of these Σ’s would cause the stability constraint
A(w(t+ ϵ)) ⪰ 0 to be violated if the dynamics eq. (61) are run for an infinitesimal amount of time ϵ. Intuitively, we
need to meld together the static constraint 0 ⪯ Σ(t) ⊥ A(w(t)) ⪰ 0 with the dynamics eq. (61).

60We only require w(t),Σ(t) to satisfy eq. (61) for “almost all t” as w(t) may not be differentiable when an eigenvalue enters or leaves
EOS. This is in line with the standard definition of a differential complementarity problem.

49

To do so, we appeal to Lemma 5 in Appendix A.6. This result essentially “differentiates” the complementarity relation
0 ⪯ Σ(t) ⊥ A(w(t)) ⪰ 0, to yield a new complementarity relation between Σ(t) and the time derivative d

dtA(w(t)).
In particular, Lemma 5 implies that under the flow defined by Definition 3, we must have:

0 ⪯ Σ(t) ⊥ d
dtA(w(t)) ⪰U(w) 0. (66)

We have thus turned a “position-level” constraint on the residual A(w(t)) into a “velocity-level” constraint on its time
derivative d

dtA(w(t)). We now expand d
dtA(w(t)) to reveal its dependence on Σ(t):

d
dtA(w(t)) = ∇A(w)

[
dw
dt

]
(chain rule)

= −∇H(w)
[
dw
dt

]
(definition of A)

= −∇H(w)
[
−η
[
∇L(w) + 1

2∇H(w)⊤[Σ(t)]
]]

(form of dw
dt)

= η∇H(w)[∇L(w)]︸ ︷︷ ︸
=:α(w)

+ 1
2η∇H(w)∇H(w)⊤︸ ︷︷ ︸

=:β(w)

[Σ(t)] (linearity)

This reveals that d
dtA(w(t)) is affine in Σ(t). Namely, if we define the matrix α(w) and tensor β(w) as:

α(w) := η∇H(w)[∇L(w)] ∈ Sym(Rd), β(w) := η
2∇H(w)∇H(w)⊤ ∈ Sym(Rd)⊗2, (67)

then d
dtA(w(t)) is given by the affine expression:

d
dtA(w(t)) = α(w) + β(w)[Σ(t)]. (68)

Substituting this into eq. (66) implies that Σ(t) must satisfy the complementarity relation:

0 ⪯ Σ(t) ⊥ α(w) + β(w)[Σ(t)] ⪰U(w) 0. (69)

Since Σ(t) ∈ Sym(U(w)), this is precisely an SDCP (Appendix A.1.4) defined over the critical subspace U(w):

Σ(t) ∈ SDCPU(w) (α(w), β(w)). (70)

Thus, we are now ready to state the ODE formulation of the central flow.

Definition 4 (Gradient Descent Central Flow, ODE Formulation). We say {w(t)}t≥0 follows the gradient descent
central flow if for almost all t ≥ 0, w(t) satisfies eq. (61) for some Σ(t) ∈ SDCPU(w(t)) (α(w(t)), β(w(t))).

This DCP-to-ODE conversion can be straightforwardly generalized to a broader class of DCPs, and this is done in
Appendix A.6, Lemma 6. Our subsequent central flow derivations will directly invoke Lemma 6.

Existence and uniqueness of SDCP solution Σ(t) Recall from Appendix A.1.4, Lemma 1 that the SDCP eq. (69)
will have a unique solution Σ(t) when β(w) is symmetric and positive definite as a linear operator over Sym(U).
Due to its outer product structure, β(w) is always symmetric and positive semi-definite. If β is also full rank as an
operator acting on Sym(U(w)), then it is positive definite, and Σ(t) is unique. Empirically, in our experiments, we
always do observe that this full-rank condition is satisfied (it is equivalent to full-rankness of βU (w) defined below in
eq. (80)), and thus Σ(t) is unique. Note that existence and uniqueness of Σ(t) does not necessarily imply existence
and uniqueness of the central flow ODE.

Existence and uniqueness of central flow Provided that β(w) is full-rank as an operator on Sym(U(w)) for all w,
prior results imply existence and uniqueness for the gradient descent central flow (see Appendix A.6).

One unstable eigenvalue As a sanity check, we now verify that when there is one eigenvalue at the edge of stability
(i.e. when the critical subspace has dimension 1), Definition 4 recovers the central flow defined in Section 3.2.1.

50

In general, a subspace U of dimension 1 has the form U = spanu for some u ∈ Rd, so Sym(U) = {σ2 uu⊤ : σ2 ∈
R}, and SDCPU (α, β) reduces to a 1-dimensional SDCP:

SDCPU (α, β) = σ2uu⊤, σ2 = SDCPR(αu, βu), αu := u⊤αu︸ ︷︷ ︸
∈R

, βu := u⊤β[uu⊤]u︸ ︷︷ ︸
∈R

.

Thus, σ2 has the closed-form solution described in Remark 2:

σ2 = max

(
−αu

βu

)
.

Therefore, when there is one eigenvalue at the edge of stability, Σ(t) from eq. (70) becomes:

Σ(t) = σ2uu⊤, σ2 = max

(
−αu(w)

βu(w)

)
, αu(w) = u⊤α(w)u, βu(w) = u⊤β(w)[uu⊤]u,

where u ∈ Rd is the top eigenvector of H(w) at w, and α(w), β(w) were defined in eq. (67). These simplify to:

αu(w) = η∇L(w)⊤∇S(w), βu(w) =
η
2∥∇S(w)∥

2, (71)

where we recall that S(w) denotes the top eigenvalue of H(w) at w. Therefore:

σ2 = max

(
−2∇L(w)⊤∇S(w)
∥∇S(w)∥2

, 0

)
. (72)

When ⟨−∇L(w),∇S(w)⟩ > 0, i.e. when progressive sharpening holds, this recovers eq. (13). Else, σ2 = 0, and the
central flow will leave the edge of stability.

Finally, since Σ(t) = σ2uu⊤, eq. (61) reduces to:

dw

dt
= −η

[
∇L(w) + 1

2σ
2∇S(w)

]
,

which recovers eq. (14).

Predicting time-averages The central flow can predict the time-average of various quantities, such as the loss or
squared gradient norm, along the gradient descent trajectory. For any quantity f(w), we write f̄(t) for the central
flow’s prediction for E[f(wt)] at step t.

For example, the central flow’s prediction L̄(t) for the time-averaged loss E[L(wt)] at step t is given by:

E[L(wt)] = E[L(w(t) + δt)]

≈ E
[
L(w(t)) +∇L(w(t))⊤δt + 1

2δ
⊤
t H(w(t))δt

]
(Taylor expansion)

= L(w(t)) + 1
2 ⟨H(w(t)),Σ(t)⟩ (E[δt] = 0, E[δtδ⊤t] = Σ(t))

= L(w(t)) + 1
2 tr

[
2
ηΣ
]

(HΣ = 2
ηΣ)

= L(w(t)) + 1
η tr Σ(t)

:= L̄(t). (73)

Similarly, the prediction for the time-averaged squared gradient norm E[∥∇L(wt)∥2] at step t is:

E[∥∇L(wt)∥2] ≈ E
[
∥∇L(w(t)) +H(w(t))δt∥2

]
= ∥∇L(w(t))∥2 +

〈
H2(w(t)),Σ(t)

〉
= ∥∇L(w(t))∥2 + 4

η2
tr Σ(t).

=: ∥∇L(t)∥2 (74)

51

In general, for any function f(w), the central flow predicts that the time-average of f(wt) at step t is:

E[f(wt)] ≈ E
[
f(w(t)) +∇f(w(t))⊤δt + 1

2δ
⊤
t ∇2f(w(t))δt

]
= f(w(t)) + 1

2

〈
∇2f(w(t)),Σ(t)

〉
:= f̄(t) (75)

(Note: our prediction eq. (74) for the squared gradient norm does not fit this template, as we choose to do a first-order
of expansion of∇L and then take the norm, rather than do a second-order expansion of f(w) = ∥∇L(w)∥2.)

The central flow can also predict the covariance with which gradient descent oscillates around the central flow. Let
Σ(t) = V (t) Λ(t)V (t)⊤ be the (reduced) eigenvalue decomposition of the rank-k matrix Σ(t), where V (t) ∈ Rd×k

and Λ(t) ∈ diag(Rk). Define xt := V (t)⊤(wt−w(t)) ∈ Rk as the displacement of gradient descent from the central
flow along these eigenvector directions. Then the central flow predicts that the covariance of these displacements
is:

E[xtx⊤t] = V (t)⊤ E[δtδ⊤t]V (t) = V (t)⊤Σ(t)V (t) = Λ(t).

In particular, if we consider the i-th diagonal entry, the central flow predicts that the variance of oscillations along the
i-th eigenvector of Σ(t) should be equal to the i-th eigenvalue of Σ(t):

E
[(

vi(t)
⊤(wt − w(t))

)2]
= λi(t). (76)

Basis-dependent version Naively computing the central flow’s dw
dt would be impractical, as storing Σ(t) and

α(w) would require O(d2) space, and storing β(w) would require O(d4) space. Fortunately, because all necessary
quantities are supported on the low-rank critical subspace, the central flow’s dw

dt can be computed efficiently using only
O(k2d+ k4) space, where k = dimU(w) is the dimension of the critical subspace, which is typically≪ d.

In particular, fix t, and let U ∈ Rd×k be a basis for the critical subspace U(w(t)). Then recall from Appendix A.1.4
that Σ(t) can be represented as Σ(t) = UXU⊤ for some low-dimensional matrix X ∈ Sym(Rk) that solves
X ∈ SDCPRk(αU (w), βU (w)), where αU ∈ Sym(Rk) and βU ∈ Sym(Rk)⊗2 were defined in eqs. (52) and (53).

Now we define HU (w) := U⊤H(w)U ∈ Sym(Rk) and its gradient∇HU (w) ∈ Sym(Rk)⊗ Rd:

HU (w)ij := u⊤i H(w)uj and ∇HU (w)ij := ∇w[u
⊤
i H(w)uj]. (77)

The tensor ∇HU (w) only requires O(k2d) space to store, and can be computed in O(k2d) time by looping over all
pairs (ui, uj) of columns of U and computing the third derivative ∇w

[
u⊤i H(w)uj

]
∈ Rd. Crucially, computing dw

dt
only requires access to the smaller∇HU (w) rather than the full∇H(w). To see this, note that:

∇HU (w)[v] = U⊤∇H(w)[v]U and ∇HU (w)
⊤[X] = ∇H(w)⊤[UXU⊤]. (78)

Thus, the central flow eq. (61) takes the form:

dw

dt
= −η

[
∇L(w) + 1

2∇H
⊤
U (w)[X]

]
, (79)

and αU (w) ∈ Sym(Rk), βU (w) ∈ Sym(Rk)⊗2 take the form:

αU (w) = η∇HU (w)[∇L(w)], βU (w) =
η
2∇HU (w)∇HU (w)

⊤. (80)

Thus, to compute dw
dt , we can compute∇HU (w), then use this to compute αU (w) and βU (w) via eq. (80), then solve

the k-dimensional problem X ∈ SDCPRk(αU (w), βU (w)), and then compute dw
dt via eq. (79).

52

In practice, due to the non-smoothness of the central flow, we do not discretize the central flow by computing dw
dt and

taking an Euler step; instead, we directly discretize the DCP formulation, as described in Appendix A.6.1.

The time-averaged predictions can also be computed efficiently given a basis. If we pick U to be orthonormal
(U⊤U = I), then the central flow’s prediction eq. (73) for the time-averaged training loss at step t is:

L̄(t) := L(w(t)) + 1
η tr

[
UXU⊤

]
= L(w(t)) + 1

η tr
[
XU⊤U

]
= L(w(t)) + 1

η trX. (81)

Similarly, the prediction eq. (74) for the time-averaged squared gradient norm at step t is:

∥∇L(t)∥2 := ∥∇L(w(t))∥2 + 4
η2

tr
[
UXU⊤

]
.

= ∥∇L(w(t))∥2 + 4
η2

trX. (82)

In general, for any function f(w), the prediction eq. (75) can be computed as:

f̄(t) = f(w(t)) + 1
2

〈
U⊤∇2f(w(t))U,X

〉
.

As for predicting the oscillation covariance, we can evaluate both sides of eq. (76) without needing to materialize
Σ(t) in full. If X = UX Λ(t)U⊤

X denotes the eigenvalue decomposition of X , and if we define V (t) = UUX , then
Σ(t) = V (t) Λ(t)V (t)⊤ is the eigenvalue decomposition of Σ(t). Note that UX and X will depend on the basis U ,
while V (t) and Λ(t) are independent of U .

Smoothness of the central flow At a finite set of times, a new eigenvalue enters or leaves the edge of stability.
We refer to these instants as breakpoints. In between the breakpoints, Σ(t) is continuous and w(t) is differentiable.
Moreover, the SDCP is solved by the linear inverse Σ = −Uβ−1

U [αU]U
⊤ where αU , βU are defined in eq. (80) (see

Remark 1). Further, d
dtA(w(t))

∣∣
U(w)

= 0, i.e. all Hessian eigenvalues that are at EOS remain fixed at 2/η. However,
at the breakpoints, Σ(t) is discontinuous and w(t) is not differentiable (although they are still right-continuous and
right-differentiable, respectively).

A.2.3 The Projection Formulation

In this section we will show that the gradient descent central flow (Definition 3 and Definition 4) can be equivalently
interpreted as projected gradient flow constrained to the stable set Sη, i.e. the subset of weight space where gradient
descent is locally stable:

Sη := {w : S(w) ≤ 2/η}. (83)

For general constrained optimization problems, a projected gradient flow projects the negative gradient onto the
tangent cone of the constraint set before taking an infinitesimal step. The tangent cone consists of the set of allowable
directions that would not cause any constraints to be violated.

In our case, the tangent cone TSη(w) of the stable set Sη at the point w ∈ Sη is the set of directions that, to first order,
would not increase the sharpness if we moved in that direction from w. This tangent cone is given by:

TSη(w) = {z ∈ Rd : ∇H(w)[z] ⪯U(w) 0}. (84)

Note that this is a convex cone, since it is closed under linear combinations with non-negative weights.

We use projM (·) to denote the usual Euclidean projection onto a set M ⊆ Rd:

projM (v) = argmin
z∈M

∥v − z∥22. (85)

Projecting a vector onto the tangent cone of the stable set involves solving a certain SDCP:

53

Lemma 2. The projection of a vector v ∈ Rd onto the tangent cone of Sη at w ∈ Sη is given by:

projTSη (w)[v] = v − 1
2∇H(w)⊤[Σ] where Σ ∈ SDCPU(w)

(
−∇H(w)[v], 12∇H(w)∇H(w)⊤

)
, (86)

where U(w) := ker
[
H(w)− 2

η I
]

is the critical subspace (Definition 2).

Proof. Recall that the tangent cone of Sη is the set: {z ∈ Rd : ∇H(w)[z] ⪯U(w) 0}. Therefore, the projection of v
onto this set is given by:

projTSη (w)[v] = v + δ∗, (87)

where the perturbation δ∗ is the optimal solution to the optimization problem:

min
δ
∥δ∥2 such that ∇H(w)[v + δ] ⪯U(w) 0. (88)

This is a quadratic program with a semidefinite constraint. Introducing a dual variable Σ ∈ Sym(U(w)), the KKT
conditions for this optimization problem are:

δ = −1
2∇H(w)⊤[Σ]︸ ︷︷ ︸
stationarity

, ⟨Σ,∇H(w)[v + δ]⟩ = 0︸ ︷︷ ︸
complementary slackness

, ∇H(w)[v + δ] ⪯U(w) 0︸ ︷︷ ︸
primal feasibility

, Σ ⪰ 0︸ ︷︷ ︸
dual feasibility

. (89)

Substituting the first condition into the middle two yields the following three conditions:

0 ⪯ Σ ⊥ −∇H(w)[v] + 1
2∇H(w)∇H(w)⊤[Σ] ⪰U(w) 0. (90)

We recognize these as precisely the characterization of an SDCP:

Σ ∈ SDCPU(w)

(
−∇H(w)[v], 12∇H(w)∇H(w)⊤

)
. (91)

Therefore, if Σ satisfies eq. (91), then δ = −1
2∇H(w)⊤[Σ] is an optimal solution to the optimization problem eq. (88),

and v + δ is the desired projection.

We are now ready to state the projection formulation of the gradient descent central flow:

Definition 5 (Gradient Descent Central Flow, Projection Formulation). We say that {w(t)}t≥0 follows the gradient
descent central flow if for almost all t,

dw

dt
= projTSη (w)[−η∇L(w)] where Sη := {w : S(w) ≤ 2/η}. (92)

The equivalence between the projection formulation (Definition 5) and the ODE formulation (Definition 4) follows
from applying Lemma 2 to the vector v = −η∇L(w) and noting SDCP(α, β) = SDCP(cα, cβ) for c > 0.

Understanding the projection formulation We now give intuition for the projection formulation:

• When S(w) < 2/η, w is in the interior of Sη so U(w) = ∅, the tangent cone is the entire space, and the
projection is the identity map. Therefore eq. (92) reduces to gradient flow.

• When there is a single eigenvalue at 2/η, w is on the boundary of Sη and the tangent cone is given by the
halfspace: TSη(w) = {v : ⟨∇S(w), v⟩ ≤ 0}. If the negative gradient lies outside this halfspace (i.e. if gradient
flow threatens to increase the sharpness above 2/η), then the projection onto the halfspace is given by the
projection onto the hyperplane: −ηΠ⊥

∇S(w)∇L(w) (see Figure 24). But, if the negative gradient already lies in
the halfspace, the projection is the identity map, so the central flow follows gradient flow and leaves EOS.

54

w

−η∇L(w)

projT𝕊η (w) [−η∇L(w)]

∇S(w)

𝕊η = {w : S(w) ≤ 2/η}
stable set

T𝕊η(w) = {v : v T∇S(w) ≤ 0}

w

−η∇L(w)
= projT𝕊η(w)[−η∇L(w)]

∇S(w)

𝕊η = {w : S(w) ≤ 2/η}
stable set

T𝕊η(w) = {v : v T∇S(w) ≤ 0}

Figure 24: This cartoon illustrates projecting onto the tangent cone of the stable set TSη(w) in the case where one
eigenvalue at the edge of stability. The iterate w is on the border of the stable set (grey blob). The tangent cone is the
half-space {v : v⊤∇S(w) ≤ 0} (shaded red). Left: on the one hand, if the negative gradient (blue arrow) points out
of the stable set, then the projection (black arrow) removes the component aligned with S(w) (red arrow). Right:
on the other hand, if the negative gradient (blue arrow) already points into the stable set, then the projection (black
arrow) does nothing.

• In general, computing the projection onto TSη(w) requires solving a semidefinite quadratic program for which Σ
is the Lagrangian dual variable. The KKT conditions of this quadratic program are equivalent (up to a constant)
to the SDCP that defines Σ above.

Properties of projection This projection formulation is helpful because Euclidean projection onto a convex cone
shares some useful properties with Euclidean projection onto a linear subspace. We will use these properties below to
reason about the rate of loss decrease.

First, projection onto a convex cone C is positive homogeneous: for any scalar c > 0 we have:

projC [cv] = c projC [v]. (93)

In our case, this can also be seen directly by combining the characterization of the projection in Lemma 2, with the
identity X ∈ SDCP(α, β) ⇐⇒ cX ∈ SDCP(cα, β).

Second, by the Moreau decomposition (Moreau, 1962), any vector v can be orthogonally decomposed into the
projection onto a convex cone C and the projection onto its dual cone C∗:

v = projC [v] + projC∗ [v] where ⟨projC [v],projC∗ [v]⟩ = 0. (94)

In particular, this implies that:

⟨projC [v], v − projC [v]⟩ = 0. (95)

and:

⟨v,projC [v]⟩ = ∥projC [v]∥2. (96)

In our case, C is the tangent cone to the stable set at w, its dual cone C∗ is the so-called normal cone to the stable
set at w: {∇H(w)⊤[Σ] : Σ ∈ Sym(U(w)),Σ ⪰ 0}, and eq. (95) can be proved by rearranging the complementarity
relation in eq. (90).

Rate of loss decrease We now use the projection formulation (Definition 5) to reason about the rate of loss decrease
under the central flow. We first show the following helper lemma:

Lemma 3. Under the gradient descent central flow (Definition 5), for almost all t we have

dL(w)

dt
= −η

∥∥∥projTSη (w)[−∇L(w)]
∥∥∥2. (97)

55

Proof. By the chain rule, we have

dL(w)

dt
=

〈
∇L(w), dw

dt

〉
=
〈
∇L(w), projTSη (w)[−η∇L(w)]

〉
= −η

〈
−∇L(w), projTSη (w)[−∇L(w)]

〉
= −η

∥∥∥projTSη (w)[−∇L(w)]
∥∥∥2,

where the first line is the chain rule, the second line is the projection formulation of the central flow, the third line is
due to positive homogeneity of the projection operation eq. (93), and the last line is due to the orthogonality of the
projection eq. (96).

A simple corollary is that the training loss monotonically decreases under the gradient descent central flow:

Proposition 1 (Restated). Under the GD central flow (Definition 5), for almost all t, the loss curve L(w(t)) is
monotonically decreasing:

dL(w(t))

dt
≤ 0. (98)

Proof. The claim follows by combining Lemma 3 with the fact that a norm is always non-negative.

Another simple corollary is that the central flow decreases the loss at a less steep rate than would gradient flow. In
other words, the oscillations induce a slowdown in the rate of loss decrease:

Proposition 2 (Restated). Under the GD central flow (Definition 5), for almost all t, the slope of the loss curve is less
steep than that of gradient flow:

−η∥∇L(w(t))∥2 ≤ dL(w(t))

dt
. (99)

Proof. Projecting a vector v onto a convex cone C always makes the norm smaller:

∥v∥2 = ∥projC [v] + [v − projC [v]]∥2

= ∥projC [v]∥2 + ∥v − projC [v]∥2

≥ ∥projC [v]∥2,

where the second line is due to the orthogonality of projC [v] and v − projC [v] i.e. eq. (95), and the third line is due
to the non-negativity of a square.

Thus, recalling Lemma 3, we have:

dL(w)

dt
= −η

∥∥∥projTSη (w)[−∇L(w)]
∥∥∥2

≥ −η∥ − ∇L(w)∥2

= −η∥∇L(w)∥2.

56

Why not start with the projection formulation? Since the projection formulation of the central flow is arguably
the simplest one, one might ask why we first went through the DCP/ODE formulations before arriving at the projection
formulation. After all, since the sharpness equilibrates at 2/η at EOS, one might think that a projected gradient flow
constrained to the set {w : S(w) ≤ 2/η} is already a natural approximation. The trouble with this thinking is that
there are actually an infinite number of flows which keep the sharpness locked at 2/η, moving within the tangent
cone of the stable set. Among these, the significance of the central flow (Definition 5) is that it follows the particular
vector within the tangent cone that is closest (in Euclidean distance) to the negative gradient; that is, it makes the
smallest perturbation to the negative gradient that will force it inside the tangent cone. A priori, there is no reason
why this should be the case, and thus jumping straight to the projection formulation would be arbitrary. In fact, we
will see in our analyses of Scalar RMSProp and RMSProp that the central flows do not pick the closest tangent vector
in Euclidean distance and their central flows cannot be interpreted as a projected gradient flow.

A.2.4 Discretizing the gradient descent central flow

Discretizing the central flow is nontrivial, because the flow is nonsmooth at points where the dimension of the critical
subspace (i.e. the number of unstable eigenvalues) undergoes a change. To discretize the flow, we directly discretize
the DCP formulation (Definition 3) rather than going through the ODE formulation (Definition 4). We describe
our general procedure for discretizing DCPs in Appendix A.6.1. Let us now describe how this general procedure
specializes to the gradient descent case.

We use w(t), Σ(t) to denote our estimate for the central flow’s w(t), Σ(t). Let ϵ > 0 be the discretization step size,
e.g. ϵ = 0.25. For some tolerance τ > 0, e.g. τ = 0.05

η , we will regard Hessian eigenvalues greater than 2
η − τ as

those which might become unstable in the next discretization time step.

At each discretization step, we first compute all Hessian eigenvalues that are greater than 2
η − τ , as well as the

corresponding eigenvectors. Let k be the number of such eigenvalues, let D ∈ Rk×k be a diagonal matrix containing
such eigenvalues on the diagonal, and let U ∈ Rd×k be the corresponding orthonormal eigenvectors. Then, we
compute the tensor∇HU as in eq. (77), though note that U now refers to a basis of eigenvectors whose eigenvalues
are almost 2 rather than exactly equal to 2. Then, we compute αU and βU as in eq. (80). Then, we solve the following
k-dimensional SDCP:

X(t) = SDCPRk(2η I −D + ϵ αU , ϵ βU), (100)

so that Σ(t) = UX(t)U⊤. Then, we update the weights via:

w(t+ϵ) = w(t) − ϵ η
[
∇L(w(t)) + 1

2∇H
⊤
U [X(t)]

]
. (101)

To predict the time-average of the train loss, the squared gradient, and the covariance of the oscillations, we use
eq. (81), eq. (82), and eq. (76), respectively.

A.3 Scalar RMSProp

We model the Scalar RMSProp iterates {wt} as oscillating around a central flow w(t) with mean zero and covariance
Σ(t). That is, if δt := wt−w(t) denotes the displacement (“the oscillation”), then E[δt] = 0 and E[δtδ⊤t] = Σ(t). Let
ν(t) := E[vt] model the time-averaged νt, and we will frequently neglect the distinction between the two, implicitly
assuming that νt concentrates tightly around ν(t).

A similar argument as for gradient descent implies that the time-averaged gradient is approximately:

E[∇L(wt)] ≈ ∇L(w(t)) + 1
2∇H(w(t))⊤[Σ(t)]. (102)

57

Meanwhile, we approximate the time-average of the squared gradient norm as:61

E[∥∇L(wt)∥2] ≈ E[∥∇L(w(t)) +H(w(t)) δt∥2]
= ∥∇L(w(t))∥2 + E[∥H(w(t)) δt∥2] (103)

where the first line is a first-order Taylor expansion of∇L around w(t) and the second line is because E[δt] = 0.

We define the critical subspace U(w, ν) as the eigenspace of the effective Hessian η√
ν
H(w) that corresponds to the

eigenvalue 2:

U(w, ν) := ker
[

η√
ν
H(w)− 2I

]
. (104)

We model Scalar RMSProp as oscillating within the critical subspace, i.e. we assume that δt ∈ U(w(t), ν(t)).

This implies that H(w(t)) δt =
2
√

ν(t)

η δt, which lets us simplify eq. (103) as:

E[∥∇L(wt)∥2] ≈ ∥∇L(w(t))∥2 + E[∥H(w(t)) δt∥2]

= ∥∇L(w(t))∥2 + 4ν(t)
η2

E[∥δt∥2]

= ∥∇L(w(t))∥2 + 4ν(t)
η2

tr Σ(t), (105)

where the final line is because E[∥δt∥2] = E[tr
(
δtδ

⊤
t

)
] = trΣ(t).

Based on the time averages eq. (102) and eq. (105), we make the ansatz that the joint dynamics of (wt, νt) can be
modeled by a central flow (w(t), ν(t)) of the form:

dw

dt
= − η√

ν

[
∇L(w) + 1

2∇H(w)⊤[Σ(t)]
]

dν

dt
= 1−β2

β2

[
∥∇L(w)∥2 + 4ν

η2
tr(Σ(t))− ν

]
.

(106)

As with gradient descent, to determine Σ(t) we will impose three conditions for all times t:

1. PSD: As a covariance matrix, Σ(t) is positive semidefinite (PSD), i.e. Σ(t) ⪰ 0.

2. Stability: The effective sharpness remains bounded by 2, i.e. η√
ν
H(w) ⪯ 2I .

3. Complementarity: The oscillations are contained within the critical subspace, i.e spanΣ(t) ⊆ U(w(t), ν(t)).

To write these concisely, it will be convenient to define the matrix-valued “residual” function A(w, ν) by:

A(w, ν) := 2
√
ν

η I −H(w), (107)

so that stability is equivalent to A(w, ν) ⪰ 0 and the critical subspace is precisely U(w, ν) = kerA(w, ν). With this
notation, we can concisely express the above three conditions as a semidefinite complementarity relation:

0 ⪯ Σ(t) ⊥ A(w(t), ν(t)) ⪰ 0.

We say that (w(t),Σ(t)) follow the Scalar RMSProp central flow if they follow eq. (106) along with this semidefinite
complementarity relation:

Definition 6 (Scalar RMSProp Central Flow, DCP Formulation). We say that {(w(t), ν(t),Σ(t))}t≥0 satisfy the
Scalar RMSProp central flow if they satisfy eq. (106) and 0 ⪯ Σ(t) ⊥ A(w(t), ν(t)) ⪰ 0 for almost all t.

61We note here that this is not a “faithful” second-order Taylor expansion of the gradient ∇L(wt) around w(t). We are implicitly assuming
that ∥E[∇L(wt)]∥2 ≈ ∥∇L(E[wt])∥2 which neglects the term 2∇3L(w(t))[∇L(w(t)),Σ(t)]. This omission simplifies the expressions and
our numerical experiments still successfully predict Σ(t) across a variety of datasets and architectures which justifies this omission.

58

Since this DCP can be expressed in the general form described in Appendix A.6, we can use Lemma 6 to convert it
into an equivalent ODE. In particular, if w̃ := [w, ν]⊤ denotes the augmented state, we can write eq. (106) as:

dw̃

dt
= f(w̃) +B(w̃)[Σ] where f(w̃) :=

[
− η√

ν
∇L(w)

1−β2

β2
[∥∇L(w)∥2 − ν]

]
and B(w̃)[Σ] :=

[
− η

2
√
ν
∇H(w)⊤[Σ]

1−β2

β2
· 4ν
η2

tr Σ

]
,

and we can write the complementarity relation as 0 ⪯ Σ(t) ⊥ A(w̃(t)) ⪰ 0.

Therefore, Lemma 6 implies that

Σ(t) ∈ SDCPU(w,ν) (α(w, ν), β(w, ν)),

where the matrix α(w, ν) ∈ Sym(Rd) and tensor β(w, ν) ∈ Sym(Rd)⊗2 are defined by:

α(w, ν) := ∇A(w̃)[f(w̃)]

=
[
−∇H(w) 1

η
√
ν
I
] [− η√

ν
∇L(w)

1−β2

β2
∥∇L(w)∥2 − ν

]

=
η√
ν
∇H(w)[∇L(w)] + 1

η
√
ν

1− β2
β2

[
∥∇L(w)∥2 − ν

]
I

and

β(w, ν)[Σ] := ∇A(w̃)B(w̃)[Σ]

=
[
−∇H(w) 1

η
√
ν
I
] [− η

2
√
ν
∇H(w)⊤[Σ]

1−β2

β2
· 4ν
η2

tr Σ

]

=
η

2
√
ν
∇H(w)∇H(w)⊤[Σ] +

4
√
ν

η3
· 1− β2

β2
tr[Σ]I.

Note that β(w̃) is indeed symmetric PSD, as for gradient descent:

β(w̃)[Σ,Σ′] =
η

2
√
ν

〈
∇H(w)⊤[Σ],∇H(w)⊤[Σ′]

〉
+

4
√
ν

η3
· 1− β2

β2
tr[Σ] tr

[
Σ′]

=⇒ β(w̃)[Σ,Σ] =
η

2
√
ν

∥∥∥∇H(w)⊤[Σ]
∥∥∥2 + 4

√
ν

η3
· 1− β2

β2
tr[Σ]2 ≥ 0.

This gives us the ODE formulation of the Scalar RMSProp central flow:

Definition 7 (Scalar RMSProp Central Flow, ODE Formulation). We say that {w(t), ν(t)}t≥0 follow the Scalar
RMSProp central flow if for almost all t, they satisfy eq. (106) for some

Σ(t) ∈ SDCPU(w(t),ν(t)) (α(w(t), ν(t)), β(w(t), ν(t))).

One unstable eigenvalue As a sanity check, we now verify that this formulation recovers eq. (27) when there is
one eigenvalue at the edge of stability. Just as with gradient descent (see above), in this setting Σ(t) reduces to:

Σ(t) = σ2uu⊤, σ2 = max

(
−αu(w, ν)

βu(w, ν)

)
, αu(w, ν) = u⊤α(w, ν)u, βu(w, ν) = u⊤β(w, ν)[uu⊤]u,

where u ∈ Rd is the unit-normalized top eigenvector of H(w) at w. Simplifying, we have:

αu(w, ν) =
η√
ν
⟨∇L(w),∇S(w)⟩+ 1

η
√
ν
· 1− β2

β2

[
∥∇L(w)∥2 − ν

]
βu(w, ν) =

η

2
√
ν
∥∇S(w)∥2 + 4

√
ν

η3
· 1− β2

β2
.

59

Then, when αu(w, ν) is negative, we have:

σ2 = −αu(w, ν)

βu(w, ν)

= −
η√
ν
⟨∇L(w),∇S(w)⟩+ 1

η
√
ν
· 1−β2

β2

[
∥∇L(w)∥2 − ν

]
η

2
√
ν
∥∇S(w)∥2 + 4

√
ν

η3
· 1−β2

β2

(definition of αu, βu)

=
β2 ⟨−∇L(w),∇S(w)⟩+ 1

η2
· (1− β2)

[
ν − ∥∇L(w)∥2

]
β2 · 12∥∇S(w)∥

2 + (1− β2)
4ν
η4

(simplify)

=
β2 ⟨−∇L(w),∇S(w)⟩+ (1− β2)

[
S(w)2

4 − ∥∇L(w)∥2
η2

]
β2 · 12∥∇S(w)∥

2 + (1− β2)S(w)2/η2
. (ν = η2S(w)2

4 at EOS)

which indeed recovers eq. (27). On the other hand, when αu(w, ν) is positive, σ2 = 0 and the central flow reduces to
the stable flow eq. (25).

Normalized gradient descent As β2 → 0, Scalar RMSProp becomes normalized gradient descent, and the formula
eq. (27) for σ2(w; η, β2) reduces to:

σ2(w; η) =
η2

4
− ∥∇L(w)∥

2

S(w)2
.

In practice, we observe that the first term generally dominates the second term. Thus, for NGD with one unstable
eigenvalue, we have approximately:

σ2(w; η) ≈ η2

4
. (108)

This clearly illustrates how σ2 grows monotonically with η.

Does the loss decrease? Whereas the gradient descent central flow decreases the loss monotonically (Proposition 1),
this is not true for the Scalar RMSProp central flow. Indeed, we have seen that with one unstable eigenvalue, the
Scalar RMSProp central flow takes the form:

dw

dt
= − 2

S(w)

[
∇L(w) + 1

2
σ2(w; η, β2)∇S(w)

]
.

Thus, by the chain rule, the rate of change in the loss is given by:

dL

dt
=

〈
∇L(w), dw

dt

〉
= − 2

S(w)

[
∥∇L(w)∥2 + 1

2
σ2(w; η, β2) ⟨∇L(w),∇S(w)⟩

]
.

If progressive sharpening holds, i.e. if ⟨∇L(w),∇S(w)⟩ < 0, then the second term is acting to increase L, and for
sufficiently large values of σ2, this increase will outweigh the decrease from the first term, causing L to go up. Indeed,
if progressive sharpening holds, then dL

dt > 0 so long as:

σ2(w; η, β2) >
2∥∇L(w)∥2

−⟨∇L(w),∇S(w)⟩
.

This can indeed occur. For instance, if we consider the case of normalized gradient descent (β2 → 0) and if we make
the approximation described in eq. (108), then dL

dt > 0 so long as the learning rate η satisfies:

η >

√
8∥∇L(w)∥2

−⟨∇L(w),∇S(w)⟩
. (109)

60

Thus, for sufficiently large learning rates η, the train loss will go up rather than down under the central flow.

The effect of the hyperparameters η, β2

We can use the Scalar RMSProp central flow to reason about the effect of the algorithm’s hyperparameters. In
Section 4.3, we discussed the case of a single unstable eigenvalue; we showed that at any point w ∈ Rd in weight
space, the strength σ2 of the implicit sharpness regularization is monotonically increasing in η. We also showed that
β2 monotonically interpolates σ2 between a certain value for NGD (β2 = 0) and a certain value for GD (β1 = 1).
?? extends both of these results from the special case of one unstable eigenvalue to the general setting of multiple
unstable eigenvalues.

Proposition 5. Let η, β2 > 0 be arbitrary. Given an initial point w, define ν = η2S(w)2

4 so that the effective
sharpness is 2. Let w follow the Scalar RMSProp central flow. Let U = U(w) be the top eigenspace of the Hessian
H(w). Assume that ∇H(w)∇H(w)T ≻U 0. Then d

dtH(w(t))
∣∣
U

= C(η, β2)IU where C(η, β2) is negative, is
monotonically decreasing in η, and is monotonic (either increasing or decreasing) in β2.

d

dt
H(w(t)) = min (−a,C(η, β2)IU) where a :=

2

S(w)
∇HU (w)[∇L(w)]. (110)

Proof. We will define:

a =
2

S(w)
∇HU (w)[∇L(w)], B =

1

S(w)
∇HU (w)∇HU (w)

T .

Then using the chain rule we have that:

dHU (w)

dt
= ∇HU (w)

[
dw

dt

]
= −(a+B[Σ]).

We can also decompose α, β as:

αU = a+ bI where b =
2

η2S(w)
· 1− β2

β2

[
∥∇L(w)∥2 − η2S(w)2

4

]
βU = B + cI ⊗ I where c =

2S(w)

η2
· 1− β2

β2
.

Define Σ0 := −B−1a. Then by the Sherman-Morrison formula,

Σ = Σ0 −
tr Σ0 + b/c

1/c+B−1[I, I]
B−1[I].

Plugging this into the formula for dH
dt ,

dHU

dt
= −a−B[Σ] =

trΣ0 + b/c

1/c+B−1[I, I]
IU .

Expanding the definitions of b, c:

dHU

dt
= C(η, β2)IU where C(η, β2) :=

trΣ0 +
1

S(w)2

[
∥∇L(w)∥2 − η2S(w)2

4

]
β2

1−β2
· η2

2S(w) +B−1[I, I]
. (111)

Note that both the numerator and denominator of C(η, β2) are linear in η2 and the denominator is strictly positive
(because B ≻ 0) so this is either monotonically increasing in η or decreasing in η. We can compute the two limits:

lim
η→0

C(η, β2) =
trΣ0 +

∥∇L(w)∥2
S(w)2

B−1[I, I]
, lim

η→∞

dHU

dt
= −S(w)

2
· 1− β2

β2
.

61

Next, note that because tr Σ ≥ 0, we have that:

0 ≤ tr Σ0 −
tr Σ0 + b/c

1/c+B−1[I, I]
B−1[I, I] =

trΣ0/c− (b/c)B−1[I, I]

1/c+B−1[I, I]
.

Therefore, tr Σ0 ≥ bB−1[I, I]. Finally,

lim
η→0

C(η, β2) =
trΣ0 +

∥∇L(w)∥2
S(w)2

B−1[I, I]
≥ tr Σ0

B−1[I, I]
≥ b ≥ −S(w)

2
· 1− β2

β2
= lim

η→∞
C(η, β2).

which completes the proof that dHU
dt is decreasing in η.

For the β2 dependence, note that the numerator of C(η, β2) is independent of β2 and the denominator is linear in β2
so it will monotonically interpolate between the values when β2 = 0 and β2 = 1. We can additionally compute these
as:

lim
β2→0

C(η, β2) =
trΣ0 +

1
S(w)2

[
∥∇L(w)∥2 − η2S(w)2

4

]
B−1[I, I]

, lim
β2→1

C(η, β2) = 0.

Predicting time-averages As with gradient descent, the Scalar RMSProp central flow can predict the time-average
of various quantities, such as the loss or squared gradient norm, along the Scalar RMSProp trajectory. Recall that for
a function f(w), we use f̄(t) to denote the central flow’s prediction for the time-average E[f(wt)] at step t.

The prediction L̄(t) for the time-averaged loss at step t is:

E[L(wt)] ≈ L(w(t)) +
√
ν(t)
η tr Σ(t) =: L̄(t). (112)

The prediction for the time-averaged squared gradient norm at step t is:

E[∥∇L(wt)∥2] ≈ ∥∇L(w(t))∥2 + 4ν(t)
η2

tr Σ(t) =: ∥∇L(t)∥2. (113)

These can be derived along similar lines as eqs. (73) and (74) for gradient descent, but using the Scalar RMSProp
complementarity condition H(w) Σ(t) = 2

√
ν(t)
η Σ(t).

As for predicting the covariance of the oscillations, let Σ(t) = V (t)Λ(t)V (t)⊤ be the (reduced) eigenvalue decompo-
sition of the rank-k matrix Σ(t), where V (t) ∈ Rd×k and Λ(t) ∈ diag(Rk). Then the central flow predicts that the
variance of oscillations along the i-th eigenvector of Σ(t) should be equal to the i-th eigenvalue of Σ(t):

E
[(

vi(t)
⊤(wt − w(t))

)2]
= λi(t). (114)

Practical implementation When implementing the Scalar RMSProp central flow, we treat Scalar RMSProp as an
instance of a more general class of adaptive preconditioned methods that is described in Appendix A.5. Please refer
to that section for details on how we discretize the central flow in practice.

A.4 RMSProp

We will begin by describing the stability condition for preconditioned gradient descent on a quadratic. Consider
optimizing the quadratic L(w) = 1

2w
⊤Hw using preconditioned gradient descent with preconditioner P ≻ 0:

w ← w − P−1∇L(w) = w − P−1Hw = (I − P−1H)w. (115)

62

The matrix P−1H is non-symmetric, but is similar to the symmetric matrix P−1/2HP−1/2, and thus has the same
eigenvalues, which are necessarily real. If all eigenvalues of P−1H are contained in (0, 2) then all eigenvalues of
(I − P−1H) are contained in (−1, 1), and hence w → 0 exponentially fast. Otherwise, the dynamics will diverge
along the right eigenvectors of P−1H with eigenvalues outside this range.62

We now derive the RMSProp central flow. We model the RMSProp iterates {wt} as oscillating around a central
flow w(t) with mean zero and covariance Σ(t). That is, if δt := wt − w(t) denotes the displacement between
RMSProp and the central flow (“the oscillation”), then E[δt] = 0 and E[δtδ⊤t] = Σ(t). Let ν(t) := E[vt] model
the time-averaged νt, and we will frequently neglect the distinction between the two, implicitly assuming that νt
concentrates tightly around ν(t).

A similar argument as for gradient descent implies that the time-averaged gradient is approximately:

E[∇L(wt)] ≈ ∇L(w(t)) + 1
2∇H(w(t))⊤[Σ(t)]. (116)

Meanwhile, we approximate the time-average of the elementwise squared gradient as:

E
[
∇L(wt)

⊙2
]
= E

[
∇L(w(t) + δt)

⊙2
]

(wt = w(t) + δt)

≈ E
[
(∇L(w(t)) +H(w(t))δt)

⊙2
]

(Taylor expansion)

= E
[
∇L(w(t))⊙2 + 2∇L(w)⊙H(w(t))δt + (H(w(t))δt)

⊙2
]

(expand the square)

= ∇L(w(t))⊙2 + E
[
(H(w(t))δt)

⊙2
]

(E[δt] = 0)

=⇒ E[∇L(wt)
⊙2] ≈ ∇L(w(t))⊙2 + E

[
(H(w(t))δt)

⊙2
]
. (117)

Recall that RMSProp can be viewed as preconditioned gradient descent with the dynamic preconditioner:

P (ν) := diag(
√
ν/η). (118)

We therefore define stability for RMSProp by the condition P (ν)−1H(w) ⪯ 2I , and we define the critical subspace
U(w, ν) as the eigenspace of the effective Hessian P (ν)−1H(w) corresponding to the eigenvalue 2:

U(w, ν) := ker
[
P (ν)−1H(w)− 2I

]
.

We model RMSProp as oscillating within the critical subspace, i.e. we assume that δt ∈ U(w(t), ν(t)). This allows
us to simplify eq. (117) as:

E
[
∇L(wt)

⊙2
]
≈ ∇L(w(t))⊙2 + E

[
(H(w(t))δt)

⊙2
]

= ∇L(w(t))⊙2 + 4E
[
(P (ν(t))δt)

⊙2
]

(H(w)δt = 2P (ν)δt)

= ∇L(w(t))⊙2 +
4

η2
ν(t)⊙ E

[
δ⊙2
t

]
(P (ν) = diag[ν1/2/η])

= ∇L(w(t))⊙2 +
4

η2
ν(t)⊙ E

[
diag[δtδ

⊤
t]
]

(v⊙2 = diag[vv⊤])

= ∇L(w(t))⊙2 +
4

η2
ν(t)⊙ diag[Σ(t)]. (E[δtδ⊤t] = Σ(t))

Based on these time averages, we make the central flow ansatz:

dw

dt
= − η√

ν
⊙
[
∇L(w) + 1

2∇H(w)⊤[Σ(t)]
]

dν

dt
=

1− β2
β2

[
∇L(w)⊙2 +

4ν

η2
⊙ diag[Σ(t)]− ν

]
.

(119)

As with the previous optimizers, to determine Σ(t) we impose three conditions for all times t:
62Each right eigenvector u of P−1H corresponds to an eigenvector v of P−1/2HP−1/2 via the relation v = P 1/2u.

63

1. PSD: As a covariance matrix, Σ(t) is positive semidefinite (PSD), i.e. Σ(t) ⪰ 0.

2. Stability: The effective sharpness remains bounded by 2, i.e. P (ν)−1H(w) ⪯ 2I .

3. Complementarity: The oscillations are contained within the critical subspace, i.e. spanΣ(t) ⊆ U(w(t), ν(t)).

To express these conditions more concisely, we define the matrix-valued function A(w, ν) as:

A(w, ν) := 2P (ν)−H(w),

so that stability is A(w, ν) ⪰ 0, and the critical subspace is precisely U(w, ν) = kerA(w, ν). Using this notation,
the above conditions can be summarized more compactly as the semidefinite complementarity relation:

0 ⪯ Σ(t) ⊥ A(w(t), ν(t)) ⪰ 0.

Definition 8 (RMSProp Central Flow, Differential Complementarity Problem). We say that {w(t), ν(t)}t≥0 follow
the RMSProp central flow if for almost all t ≥ 0, they satisfy eq. (119) along with the complementarity relation:
0 ⪯ Σ(t) ⊥ A(w(t), ν(t)) ⪰ 0.

Since this DCP can be expressed in the general form described in Appendix A.6, we can use Lemma 6 to convert it
into an equivalent ODE. In particular, if w̃ := [w, ν]⊤ denotes the augmented state, we can write eq. (119) as:

dw̃

dt
= f(w̃) +B(w̃)[Σ] where f(w̃) :=

[
−P (ν)−1∇L(w)

1−β2

β2
[∇L(w)⊙2 − ν]

]
and B(w̃)[Σ] :=

[
−1

2P (ν)−1∇H(w)⊤[Σ]
1−β2

β2
· 4P (ν)2 diagΣ

]
,

and we can write the complementarity relation as 0 ⪯ Σ(t) ⊥ A(w̃(t)) ⪰ 0, where:

∇A(w̃) = [−∇H(w), 2∇νP (ν)] where ∇νP (ν)[z] = diag

[
1

2η
√
ν
⊙ z

]
=

1

2η2
diag[P (ν)−1z] ∀z.

Therefore, Lemma 6 implies that

Σ(t) ∈ SDCPU(w,ν) (α(w, ν), β(w, ν))

where the matrix α(w, ν) ∈ Sym(Rd) and tensor β(w, ν) ∈ Sym(Rd)⊗2 are defined by:

α(w, ν) := ∇A(w̃)[f(w̃)]

=
[
−∇H(w) 2∇νP (ν)

] [−P (ν)−1∇L(w)
1−β2

β2
[∇L(w)⊙2 − ν]

]

= ∇H(w)[P (ν)−1∇L(w)] + 1− β2
β2

· 1
η2
· diag

[
P (ν)−1

(
∇L(w)⊙2 − ν

)]
and

β(w, ν)[Σ] := ∇A(w̃)B(w̃)[Σ]

=
[
−∇H(w) 2∇νP (ν)

] [−1
2P (ν)−1∇H(w)⊤[Σ]
1−β2

β2
· 4P (ν)2 diagΣ

]

= 1
2∇H(w)P (ν)−1∇H(w)⊤[Σ] +

1− β2
β2

· 4
η2
· diag[P (ν) diag[Σ]].

Note that β(w̃) is indeed symmetric PSD, as for gradient descent and Scalar RMSProp:

β(w̃)[Σ,Σ′] = 1
2

〈
∇H(w)⊤[Σ],∇H(w)⊤[Σ′]

〉
P (ν)−1

+
1− β2
β2

· 4
η2
〈
diag[Σ], diag[Σ′]

〉
P (ν)

=⇒ β(w̃)[Σ,Σ] = 1
2

∥∥∥∇H(w)⊤[Σ]
∥∥∥2
P (ν)−1

+
1− β2
β2

· 4
η2
∥diag[Σ]∥2P (ν) ≥ 0.

This gives us the ODE formulation of the RMSProp central flow:

64

Definition 9 (RMSProp Central Flow, ODE Formulation). We say that {w(t), ν(t)}t≥0 follow the RMSProp central
flow if, for almost all t, they satisfy eq. (119) with

Σ(t) ∈ SDCPU(w(t),ν(t)) (α(w(t), ν(t)), β(w(t), ν(t))).

Predicting time-averages As with the previous optimizers, the RMSProp central flow can predict the time-average
of various quantities, such as the loss or squared gradient norm, along the RMSProp trajectory. Recall that for
a function f(w), we use f̄(t) to denote the central flow’s prediction for the time-average E[f(wt)] at step t. See
Appendix A.5 for the derivation of the following statements. We abbreviate P (t) := P (ν(t)).

The prediction L̄(t) for the time-averaged loss at step t is:

E[L(wt)] ≈ L(w(t)) + tr [P (t) Σ(t)] =: L̄(t). (120)

The prediction for the time-averaged squared gradient norm at step t is:

E[∥∇L(wt)∥2] ≈ ∥∇L(w(t))∥2 + 4 tr
[
P (t) Σ(t)P (t)⊤

]
=: ∥∇L(t)∥2. (121)

As for predicting the covariance of the oscillations, let Σ(t) = V (t) Λ(t)V (t)⊤ be the (reduced) eigenvalue
decomposition of the rank-k matrix P 1/2(t) Σ(t)P 1/2(t), where V (t) ∈ Rd×k and Λ(t) ∈ diag(Rk). Then the
central flow predicts that the P -whitened variance of oscillations along the i-th eigenvector of P (t)1/2Σ(t)P (t)1/2

should be equal to the i-th eigenvalue of that matrix:

E
[(

vi(t)
⊤P (t)1/2(wt − w(t))

)2]
= λi(t). (122)

See Appendix A.5 for a discussion of why we predict the P -whitened covariance of oscillations.

Practical implementation When implementing the RMSProp central flow, we treat RMSProp as an instance of a
more general class of adaptive preconditioned methods that is described in Appendix A.5. Please refer to that section
for details on how we discretize the central flow in practice.

A.4.1 Stationarity analysis

In this appendix, we provide supporting derivations for our analysis of RMSProp’s stationary preconditioner.

Stationary preconditioner The RMSProp central flow eq. (119) is a joint flow over (w, ν). However, suppose that
the ν dynamics occur “fast” relative to the w dynamics, so that ν is always “fully caught up” to the current w. For any
fixed w, solving eq. (119) for the stationarity condition dν

dt = 0 gives the condition:

ν = ∇L(w)⊙2 +
4

η2
ν ⊙ diag[Σ]. (123)

In addition, by the PSD, stability, and complementarity conditions, we have:

0 ⪯ Σ ⊥ 2P (ν)−H(w) ⪰ 0 where P (ν) := diag
(√

ν
η

)
. (124)

We will now show that for any w, there is a unique pair ν,Σ that satisfies eqs. (123) and (124). We will denote this
pair as ν(w) and Σ(w). We will further show that the corresponding preconditioner diag(

√
ν(w)/η) is the unique

optimum to the following convex optimization problem over diagonal preconditioners:

argmin
P diagonal, P⪰0

tr(P) + 1
η2
∥∇L(w)∥2P−1 such that H(w) ⪯ 2P, (125)

where ∥v∥2P−1 := v⊤P−1v. We will denote this preconditioner as P (w).

65

We show this in two parts. First, in Proposition 6 we prove that if ν,Σ satisfy eqs. (123) and (124), then P (ν) is an
optimum for eq. (125). Then, in Proposition 7 we show that the solution to eq. (125) is unique, implying that this
must be the unique optimum. At the end of this section, we describe how to numerically compute P (w) and ν̄(w)
when H(w) is so large that it can only be feasibly accessed via matrix-vector products.

Proposition 6. Define P (ν) := diag(
√
ν/η). For any g ∈ Rd, H ∈ Sym(Rd), if ν ∈ Rd,Σ ∈ Sym(Rd) satisfy:

ν = g⊙2 + 4
η2
ν ⊙ diag(Σ) (126)

0 ⪯ Σ ⊥ 2P (ν)−H ⪰ 0, (127)

then P (ν) is an optimum for the convex program:

argmin
P diagonal, P⪰0

tr(P) + 1
η2
gTP−1g such that H ⪯ 2P. (128)

Proof. Parameterizing P = diag(p) for a vector p ∈ Rd, the convex program eq. (128) can be written as:

min
p∈Rd, p≥0

d∑
i=1

pi +
1

η2
g2i
pi

such that H ⪯ 2 diag(p). (129)

Introducing a dual variable Z ⪰ 0 for the semidefinite constraint, the Lagrangian is:

L(p, Z) =

d∑
i=1

[
pi +

1

η2
g2i
pi

]
− ⟨Z, 2 diag(p)−H⟩ . (130)

Therefore, the KKT conditions are:

1− 1

η2
g2i
p2i
− 2Zii = 0 ∀i︸ ︷︷ ︸

stationarity

, H ⪯ 2 diag(p)︸ ︷︷ ︸
primal feasibility

, Z ⪰ 0︸ ︷︷ ︸
dual feasibility

, 2 diag(p)−H ⊥ Z︸ ︷︷ ︸
complementary slackness

, (131)

as well as p ≥ 0. We claim that if (v,Σ) satisfy eqs. (126) and (127), then (p, Z) = (
√
ν
η , 2

η2
Σ) solve these KKT

conditions. First, elementwise dividing both sides of eq. (126) by ν gives:

1− g⊙2

νi
−
(

4

η2

)
Σii = 0 ∀i (132)

which is equivalent to the stationary condition in eq. (131) after substituting p =
√
ν/η and Z = 2

η2
Σ. Next, the

remaining parts of eq. (131) are implied by eq. (127). Finally, we must have
√
ν ≥ 0 or P (ν) would be imaginary.

We now prove that the solution to the optimization problem eq. (128) is unique. A custom proof is needed because,
while both the objective and constraints of eq. (128) are convex, the objective is not strictly convex.

Proposition 7. For any g ∈ Rd, H ∈ Sym(Rd), the solution to eq. (125) is unique.

Proof. Assume there are two minimizers P, P ′ and let p := diag(P), δ := diag(P ′ − P). Then by convexity,
diag[p+ ϵδ] also minimizes eq. (35) for any ϵ ≤ 1. Therefore, differentiating the objective function in this direction
gives:

∑
i

δi

[
1− 1

η2
g2i
p2i

]
= 0. (133)

66

Taking another derivative implies that: ∑
i

g2i
p3i

δ2i = 0. (134)

This implies that δi = 0 in any direction where gi ̸= 0. Let I be the set of indices for which gi ̸= 0, and for any
vector p, let pI denote the vector p restricted to the indices in I . Define the linear map g by

g[vI]i :=

{
vi i ∈ I

pi i /∈ I
. (135)

In other words, g takes a reduced vector vI and fills in the missing entries with p. Next, define the operator A by

AT [vI] = diag[g[vI]]⊕ diag[vI] (136)

where ⊕ represents the direct sum. Then both pI , p
′
I minimize the following reduced SDP:

min
pI

∑
i∈I

pi such that 1
2H(w)⊕ 0|I|×|I| ⪯ AT (p). (137)

Now we apply de Carli Silva and Tunçel (2018, Proposition 1) with (A,1|I|). First, note that A[Id+|I|] = 21|I| which
satisfies the first condition. Next, for any y ̸= 0, we can take z = |y| to satisfy the second condition, as in the proof of
(de Carli Silva and Tunçel, 2018, Corollary 2) Therefore pI = p′I , and as we have already shown equality on Ic, we
must have p = p′.

Stationary flow Suppose that the ν dynamics (preconditioner adaptation) happen infinitely fast relative to the
w dynamics (optimization), so that we can treat ν as always being fixed at its current stationary value ν(w). This
motivates the stationary flow:

Definition 10 (RMSProp Stationary Flow). We say that {w(t)}t≥0 follow the RMSProp stationary flow if, for almost
all t, they satisfy

dw

dt
= − η√

ν(w)
⊙
[
∇L(w) + 1

2∇H(w)⊤[Σ(t)]
]

(138)

with
Σ(t) ∈ SDCPU(w(t),ν(w(t))) (α(w(t), ν(w(t))), β(w(t), ν(w(t)))).

Note that Σ(t) is defined as the solution to an SDCP, and is not, in general, equal to Σ̄(w(t)). That said, in the limit
of β2 → 0, Σ(t) does become Σ̄(w(t)). To see this, note that as β2 → 0, we have:

α(w, ν̄(w))→ 1− β2
β2

1

η2
diag

[
P (ν̄(w))−1

(
∇L(w)⊙2 − ν̄(w)

)]
(β2 → 0)

=
1− β2
β2

1

η2
diag

[
P (ν̄(w))−1

(
−4ν

η2
⊙ diag[Σ̄]

)]
(stationarity, i.e. eq. (123))

= −1− β2
β2

4

η3

√
ν̄(w)⊙ diag[Σ̄(w)]. (P−1(ν) = η/

√
ν)

β(w, ν̄(w))[Σ̄(w)]→ 1− β2
β2

4

η2
P (ν̄(w)) diag[Σ̄(w)] (β2 → 0)

=
1− β2
β2

4

η3

√
ν̄(w)⊙ diag[Σ̄(w)]. (P (ν) =

√
ν/η)

67

This implies that:

α(w, ν̄(w)) + β(w, ν̄(w))[Σ̄(w)]→ 0.

Thus, Σ̄(w) is the solution to the SDCP that defines Σ(t). This suggests the approximation:

dw

dt
= − η√

ν̄(w)
⊙
[
∇L(w) + 1

2∇H(w)⊤[Σ̄(w)]
]
. (139)

Note that we expect this to be a useful model even when β2 is far from the β2 = 0 limit.

Limit of large η In the limit of large η, the second term in the objective eq. (125) vanishes, and the stationary
preconditioner P (w) tends towards the minimum-trace, diagonal stable preconditioner, which we denote P̂ (w):

P̂ (w) := argmin
P diagonal, P⪰0

tr(P) such that H(w) ⪯ 2P. (140)

Note that the dual to this semidefinite program is the following semidefinite program:

Ẑ(w) := argmax
Z⪰0

⟨Z,H(w)⟩ subject to Zii ≤ 1
2 (141)

and a primal/dual optimal pair P̂ (w), Ẑ(w) must satisfy the KKT conditions:

Ẑii(w) =
1
2 , 0 ⪯ Ẑ(w) ⊥ 2P̂ (w)−H(w) ⪰ 0. (142)

In the limit of large η, the stationary EMA ν̄(w) and the stationary oscillation covariance Σ̄(w) become:

ν̄(w)→ η diag[P̂ (w)]◦2 and Σ̄(w)→ η2

2
Ẑ(w). (143)

As a result, the approximation eq. (139) can be shown to be equivalent to:

dw

dt
= −P̂ (w)−1 ⊙

[
∇L(w) + η2

4 ∇ tr P̂ (w)
]
. (144)

This is because tr P̂ (w) =
〈
Ẑ(w), H(w)

〉
by duality, so by Danskin’s theorem:

∇ tr P̂ (w) = ∇H(w)⊤[Ẑ(w)]

= 2
η2
∇H(w)⊤[Σ̄(w)].

Hence, η2

4 ∇ tr P̂ (w) = 1
2∇H(w)⊤[Σ̄(w)], and eq. (144) follows.

Connection to MaxCut Interestingly, the SDP eq. (141) is precisely the SDP relaxation of MaxCut (Goemans and
Williamson, 1995) where the Laplacian matrix of the graph is given by 1

2H(w). Meanwhile, the SDP eq. (140) that
defines P̂ is the dual to the MaxCut SDP relaxation.

Numerically solving for the stationary preconditioner When the problem dimension d is small, the optimization
problem eq. (125) can be solved exactly using a standard convex solver, e.g. cvxpy. But when d is large (e.g. the
number of weights in a reasonably sized neural network), solving eq. (125) exactly is not practical, as it is not even
practical to materialize the matrix H ∈ Rd×d. Therefore, we instead solve eq. (125) using a fixed point iteration
which only requires access to H using matrix-vector products.

68

We parameterize Σ in the factorized form Σ = DDT where D ∈ Rd×r and r is intended to be at least as large as the
rank of Σ. This is similar to the Burer-Monteiro factorization (Burer and Monteiro, 2005). We start for a random
initial guess for D and then iteratively update D and ν by:

ν ← g⊙2 + (HD)⊙21, (145)

D ← η

2
diag[ν−1/2]HD. (146)

where the second update uses the ν that was just computed in the first update.

If this update scheme reaches a fixed point (D, ν), then we have:

ν = g⊙2 + (HD)⊙21, (147)

HD = 2
η diag[ν

1/2]D. (148)

If (D, ν) satisfy these two conditions, as well as the stability condition H ⪯ 2 diag(
√
ν/η), then it can be shown that

Σ = DDT and ν satisfy eqs. (126) and (127). Indeed, Σ ⪰ 0 holds by construction, eq. (126) follows by substituting
eq. (148) into eq. (147), and eq. (148) implies [2 diag(

√
ν/η)−H]D = 0 which implies 2 diag(

√
ν/η)−H ⊥ Σ

provided that the stability condition holds.

Thus, if the update scheme reaches a fixed point eqs. (147) and (148), and if the stability condition H ⪯ 2 diag(
√
ν/η)

is also satisfied there, then we know that P = diag(
√
ν/η) solves the optimization problem eq. (125).

Empirically, we observe that this update scheme does reach a fixed point in practice. We moreover observe that if r is
sufficiently large (in particular, if it is as large as the rank of the true Σ), then the stability condition is satisfied at this
fixed point, implying that the corresponding preconditioner indeed solves eq. (125). On the other hand, we observe
that if r is too small (less than the rank of the true Σ), then while the update scheme converges to a fixed point, the
stability condition is not satisfied there.

Algorithm 1: Solving for the Stationary Preconditioner

Input: Gradient g ∈ Rd, Hessian-vector oracle v 7→ Hv, learning rate η, rank parameter r, number of steps
nsteps, tolerance parameter tolν

Output: ν, P , and D
Initialize D ∈ Rd×r with standard normal entries;
for i = 1 to nsteps do

if i > 1 then
νprev ← ν;

end
ν ← g⊙2 + sum_rows((HD)⊙2) ;
D ← η

2diag[ν−1/2]HD ;
end
if ∥ν−νprev∥2

∥ν∥2 ≥ tolν then
return "Error: more steps needed";

end
P ←

√
ν/η;

if λ1(P
−1/2HP−1/2) > 2 then

return "Error: higher r needed";
end
return ν, P , D;

69

A.5 General Class of Adaptive Preconditioned Methods

In this section, we derive a central flow for a general class of adaptive preconditioned methods that subsumes gradient
descent, Scalar RMSProp, and RMSProp as special cases. In these special cases, this flow will reduce to the central
flows that we have already derived, and whose accuracy we have verified empirically. However, we do not claim
that the central flow derived in this section will be empirically accurate for any method within this class. Rather,
we include this section because it allows us treat all three considered optimizers in a unified manner, and to easily
generalize our central flows to minor variants of the same algorithms (e.g. gradient descent with a learning rate
schedule, RMSProp with bias correction). Our implementation in code is based on this formulation.

We consider methods which update some “optimizer state” ν ∈ Rdν based on the current gradient, and then take a
preconditioned gradient step using some preconditioner P (ν) that is derived from this state:

νt = νt−1 +G(νt−1,∇L(wt)), wt+1 = wt − P (νt)
−1∇L(wt). (149)

Here, G : Rdν × Rd → Rdν determines how the optimizer state ν ∈ Rdν is updated based on the gradient, and
P : Rdν → Sym(Rd) determines how the optimizer state affects the preconditioner.

This formulation is very general and includes a wide variety of optimizers including:

• Vanilla GD: ignore ν and set P = η−1I .

• GD with a learning rate schedule η(t): Set G(ν, w) = 1 so that ν(t) = t, and P (t) = η(t)−1I

• Vanilla RMSProp:63 Set G(ν, g) = (1− β2)[g
⊙2 − ν] and P (ν) = diag[

√
ν/η]

• RMSProp with ϵ, bias correction, and learning rate schedule η(t): Set ν = [v, t], G([v, t], w) = [(1 −
β2)[g

⊙2 − v], 1] and define

P ([v, t]) =
1

η(t)
diag

[√
v

1− βt
2

+ ϵ

]
.

Note that this trick of embedding t into the state variable ν allows us to automatically derive central flows for any
smooth hyperparameter schedule (e.g. η(t), β2(t), ϵ(t)) as a simple corollary.

Remark 3. Not all algorithms of the form eq. (149) are necessarily sensible optimizers. Moreover, we will see below
that the central flow is only well-defined if G and P satisfy a certain condition (Remark 4). Thus, it may make sense
for future work to further restrict the formulation eq. (149).

The stability of the algorithm eq. (149) requires P (ν)−1H(w) ⪯ 2I or equivalently H(w) ⪯ 2P (ν). We define

A(w, ν) := 2P (ν)−H(w), (150)

so that stability is equivalent to A(w, ν) ⪰ 0. We define the critical subspace by U(w, ν) := kerA(w, ν).

To derive the central flow, we model wt = w(t) + δt with E[δt] = 0, E[δtδ⊤t] = Σ(t), and δt ∈ kerA(w(t), ν(t)).
For ease of notation, we will sometimes use g(w) as a shorthand for the gradient∇L(w).

We will first compute the time-average of G, i.e. E[G(ν, g(wt)] = E[G(ν, g(w(t) + δt)]. A first-order Taylor
expansion of g around any point w yields:

g(w + δ) ≈ g(w) +H(w) δ.

Meanwhile, a second-order Taylor expansion of G in its second argument yields:

G(v, g +∆g) ≈ G(ν, g) +∇gG(ν, g)⊤∆g + 1
2∇

2
gG(ν, g)[∆g∆g⊤], (151)

63This formalism doesn’t directly handle our small β2 correction of β2 → 1−β2
β2

. We view this correction as “orthogonal” in the sense that
it comes when deriving a stable flow analogue of the discrete time update νt = νt−1 +G(νt−1,∇L(wt)) when this takes the form of an EMA.

70

where ∇2
gG(v,∆g) ∈ Rdν ⊗ Sym(Rd) is a tensor that represents the Hessian of each entry of G. Putting these

together, with ∆g = H(w)δ, we have:

G(ν, g(w + δ)) ≈ G(ν, g(w)) +∇gG(ν, g)⊤H(w)δ + 1
2∇

2
gG(ν, g)[H(w) δδ⊤H(w)],

Taking the time-average over δ with E[δ] = 0 and E[δδ⊤] = Σ yields:

E[G(v, g(w + δ)] ≈ G(ν, g(w)) +∇2
gG(ν, g(w))[H(w) ΣH(w)]. (152)

Since H(w)Σ = 2P (ν)Σ, we have H(w)ΣH(w) = 4P (ν)ΣP (ν), and therefore the second term becomes:

E[G(v, g(w + δ)] ≈ G(ν, g(w)) + 4∇2
gG(ν, g(w))[P (ν) ΣP (ν)]. (153)

These motivate the central flow ansatz:

dw

dt
= −P (ν)−1

[
∇L(w) + 1

2∇H(w)⊤[Σ]
]

dν

dt
= G(ν, g(w)) + 2∇2

gG(ν, g(w))[P (ν) ΣP (ν)].

(154)

We say that {w(t), ν(t),Σ(t)}t≥0 satisfy the DCP formulation of the central flow if for almost all t ≥ 0 they satisfy
eq. (154) along with the complementarity relation:

0 ⪯ Σ(t) ⊥ A(w(t), ν(t)) ⪰ 0.

As for gradient descent, Scalar RMSProp, RMSProp, we can invoke Lemma 6 to obtain an equivalent ODE formulation
that makes Σ(t) explicit. We begin by writing eq. (154) as:

dw̃

dt
= f(w̃) +B(w̃)[Σ] where f(w̃) :=

[
−P (ν)−1∇L(w)

G(ν, g(w))

]
and B(w̃)[Σ] :=

[
−1

2P (ν)−1∇H(w)⊤[Σ]
2∇2

wG(ν, g(w)) [P (ν) ΣP (ν)]

]
.

where the complementarity relation is 0 ⪯ Σ ⊥ A(w̃) ⪰ 0 with ∇A given by:

∇A(w̃) = [−∇H(w), 2∇P (ν)].

Therefore, Lemma 6 implies that:

Σ(t) ∈ SDCPU(w,ν) (α(w, ν), β(w, ν)),

where the matrix α(w, ν) ∈ Sym(Rd) and tensor β(w, ν) ∈ Sym(Rd)⊗2 are defined by:

α(w̃) := ∇A(w̃)[f(w̃)]

=
[
−∇H(w) 2∇P (ν)

] [−P (ν)−1∇L(w)
G(ν, g(w))

]
= ∇H(w)[P (ν)−1∇L(w)] + 2∇P (ν)[G(ν, g(w))]

and

β(w̃)[Σ] := ∇A(w̃)B(w̃)[Σ]

=
[
−∇H(w) 2∇P (ν)

] [−1
2P (ν)−1∇H(w)⊤[Σ]

2∇2
wG(ν, g(w))[P (ν)ΣP (ν)]

]
= 1

2∇H(w)P (ν)−1∇H(w)⊤[Σ] + 4∇P (ν) ∇2
wG(ν, g(w)) [P (ν) ΣP (ν)].

71

Remark 4. For gradient descent, Scalar RMSProp, and RMSProp, the β we derived was always symmetric PSD.
However, at the current level of generality this is not always true:

β(w, ν)[Σ,Σ′] = 1
2

〈
∇H(w)⊤[Σ],∇H(w)⊤[Σ′]

〉
P (ν)−1

+
〈
∇P (ν)⊤[Σ],∇2

wG(ν, g(w))[P (ν)Σ′P (ν)]
〉
.

While the first term is symmetric in Σ,Σ′, the second is not necessarily symmetric, so results about existence and
uniqueness for solutions to the SDCP may no longer hold.

Predicting time-averages The central flow’s predictions for time-averages can be computed as follows. Recall that
for a function f(w), we use f̄(t) to denote the central flow’s prediction for the time-average E[f(wt)] at step t. In
what follows, we abbreviate P (t) := P (ν(t)).

The prediction for the time-averaged loss at time t is:

E[L(wt)] ≈ E
[
L(w(t)) +∇L(w(t))⊤δt + 1

2δ
⊤
t H(w(t))δt

]
(Taylor expansion)

= L(w(t)) + 1
2 ⟨H(w(t)),Σ(t)⟩ (E[δt] = 0, E[δtδ⊤t] = Σ(t))

= L(w(t)) + 1
2 tr [2P (t)Σ] (HΣ = 2PΣ)

= L(w(t)) + tr [P (t) Σ(t)]

=: L̄(t). (155)

Similarly, the prediction for the time-averaged squared gradient norm at time t is:

E[∥∇L(wt)∥2] ≈ E
[
∥∇L(w(t)) +H(w(t))δt∥2

]
= ∥∇L(w(t))∥2 +

〈
H2(w(t)),Σ(t)

〉
= ∥∇L(w(t))∥2 + 4 tr

[
P (t) Σ(t)P (t)⊤

]
=: ∥∇L(t)∥2. (156)

The central flow can also predict the covariance of the oscillations. The natural basis to examine the oscillations is
the one in which the dynamics of each coordinate are decoupled under preconditioned gradient descent on the local
quadratic Taylor approximation. Thus, we define the P -whitened displacement δ̂t := P (t)1/2δt = P (t)1/2(wt−w(t)),
and the P -whitened covariance matrix of the oscillations E[δ̂tδ̂⊤t] = P (t)1/2Σ(t)P (t)1/2. Let V (t) Λ(t)V ⊤(t) be
the eigenvalue decomposition of P (t)1/2ΣP (t)1/2, and define xt := V (t)⊤δ̂t = V (t)⊤P (t)1/2(wt − w(t)) as the
P -whitened displacement between the discrete optimizer and the central flow along the top eigenvectors V (t). Then
the central flow predicts that:

E[xtx⊤t] = V (t)⊤P (t)1/2 E[δtδ⊤t]P (t)1/2V (t) = V (t)⊤ P (t)1/2Σ(t)P (t)1/2 V (t) = Λ(t).

In particular, the P -whitened variance of oscillations along the i-th eigenvector of P (t)1/2Σ(t)P (t)1/2 is predicted
to be the i-th eigenvalue of that matrix:

E
[(

vi(t)
⊤P (t)1/2(wt − w(t))

)2]
= λi(t). (157)

Basis-dependent version We can use the general recipe given in Appendix A.6 to obtain a basis-dependent version
of the central flow ODE that can be computed in time linear in d, when the preconditioner is diagonal.

Fix a time t, and we will often abbreviate w(t), ν(t), and P (ν(t)) as w, ν and P . Let U ∈ Rd×k be a basis for the
critical subspace U(w, ν). Define HU (w) := U⊤H(w)U ∈ Sym(Rk) and PU (ν) := U⊤P (ν)U ∈ Sym(Rk), as
well as their gradients∇HU (w) ∈ Sym(Rk)⊗ Rd and ∇PU (ν) ∈ Sym(Rk)⊗ Rdν . Explicitly:

∇HU (w)ij = ∇w[u
⊤
i H(w)uj] and ∇PU (ν)ij = ∇ν [u

⊤
i P (ν)uj]. (158)

72

Similarly, let∇2GPU (ν, g(w)) ∈ Rdν ⊗ Sym(Rk) be the tensor defined as:

∇2GPU (ν, g(w))q,ij = (Pui)
⊤∇2

gG(ν, g(w))q (Puj). (159)

Then the central flow takes the form:

dw

dt
= −P (ν)−1

[
∇L(w) + 1

2∇HU (w)
⊤[X]

]
(160)

dν

dt
= G(ν, g(w)) + 2∇2GPU (ν, g(w))[X] (161)

X ∈ SDCPRk(αU (w, ν), βU (w, ν)) (162)

αU (w, ν) = ∇HU (w)
[
P (ν)−1∇L(w)

]
+ 2∇PU (ν)[G(ν, g(w))] (163)

βU (w, ν) =
1
2∇HU (w)P (ν)−1∇HU (w)

⊤ + 4∇PU (ν)∇2GPU (ν, g(w)). (164)

Suppose that we pick the basis U to be orthonormal w.r.t the preconditioner P , i.e. U⊤PU = I . Then the central
flow’s prediction eq. (155) for the time-averaged train loss can be efficiently computed as:

L̄(t) := L(w(t)) + tr
[
PUXU⊤

]
= L(w(t)) + tr

[
XU⊤PU

]
= L(w(t)) + tr [X]. (165)

Similarly, the prediction eq. (156) for the time-averaged squared gradient norm can be computed as:

∥∇L∥2(t) = ∥∇L(w(t))∥2 + 4 tr
[
(PU)X(PU)⊤

]
. (166)

As for the oscillation covariance, we can compute both sides of eq. (157) without materializing Σ(t) in full. If
X = UX Λ(t)U⊤

X is the eigenvalue decomposition of X , and V (t) := P 1/2UUX , then V (t) Λ(t)V (t)⊤ is the
eigenvalue decomposition of P 1/2Σ(t)P 1/2. Note that X and UX are dependent on the basis U , while V (t) and
Λ(t) are independent of U .

Warning: variation in notation Although gradient descent can be cast as an instance of an adaptive preconditioned
method (with P = η−1I), the U defined here is different from the U in Appendix A.2.4, as the U there was
orthonormal, i.e. U⊤U = I , whereas the U here is orthonormal w.r.t the preconditioner P , i.e. U⊤PU = I or
U⊤U = ηI . As a result, the X defined here differs from the X defined in Appendix A.2.4 by a factor of η.

A.5.1 Discretizing the central flow for a generic adaptive preconditioned method

We describe our general procedure for discretizing DCPs in Appendix A.6.1. Let us now describe how this general
procedure specializes to the case of our generic adaptive preconditioned method.

We use w(t), ν(t), and Σ(t) to denote our estimate for the central flow’s w(t), ν(t), and Σ(t). Let ϵ > 0 be the
discretization step size, e.g. ϵ = 0.25. For some tolerance τ > 0, e.g. τ = 0.05, we will regard eigenvalues of the
effective Hessian P (ν)−1H(w) greater than 2− τ as those which might become unstable in the next discretization
time step.

At each discretization step, we do the following. Abbreviate w = w(t) and P = P (ν(t)). First, we compute all
eigenvalues of the effective Hessian P−1H(w) that are greater than 2− τ , as well as the corresponding eigenvectors.
Let k be the number of such eigenvalues, let D ∈ diag(Rk) be a diagonal matrix containing such eigenvalues on
the diagonal, and let U ∈ Rd×k be the corresponding eigenvectors, normalized so that they are orthonormal w.r.t P ,
that is, U⊤PU = I . For example, one could set U = P−1/2Ũ , where the columns of Ũ ∈ Rd×k are orthonormal
eigenvectors of P−1/2H(w)P−1/2.

73

Then, we compute the tensors∇HU ,∇PU ,∇2GPU as in eqs. (158) and (159), though note that U now refers to a
basis of eigenvectors whose eigenvalues are almost 2 rather than exactly equal to 2. Then, we compute αU and βU as
in eqs. (163) and (164). Then, we solve the following k-dimensional SDCP:

X(t) = SDCPRk(2I −D + ϵ αU , ϵ βU), (167)

so that Σ(t) = UX(t)U⊤. Then, we update the weights and optimizer state via:

w(t+ϵ) = w(t) − ϵ P (ν(t))−1
[
∇L(w(t)) + 1

2∇H
⊤
U [X(t)]

]
(168)

ν(t+ϵ) = ν(t) + ϵ
[
G(ν(t), g(w(t))) + 2∇2GPU (ν

(t), g(w(t)))[X(t)]
]
. (169)

To predict the time-average of the train loss, the squared gradient, and the covariance of the oscillations, we use
eq. (165), eq. (166), and eq. (157), respectively.

A.6 Differential Complementarity Problems

In this appendix, we give some brief background on differential complementarity problems (Stewart, 2011), and we
describe how to turn these into ordinary differential equations.

A differential complementarity problem (DCP) (Stewart, 2011) is a dynamical system that is defined in terms of a
complementarity relation. In this paper, we will consider DCPs of the form:

d
dtw(t) = f(w(t)) +B(w(t))[Σ(t)] where 0 ⪯ Σ(t) ⊥ A(w(t)) ⪰ 0. (DCP)

Here f : Rd → Rd, B : Rd → Rd ⊗ Sym(Rd) and A : Rd → Sym(Rd) are given, and w(t) ∈ Rd and
Σ(t) ∈ Sym(Rd) are dynamical variables that must respect eq. (DCP) for almost all times t.

Example 1. The following 1-dimensional DCP models a particle moving to the right which hits a wall at w = 1:

dw(t)

dt
= 1− Σ(t) where 0 ≤ Σ(t) ⊥ 1− w(t) ≥ 0.

When w(t) < 1, complementarity forces Σ(t) = 0 so that dw(t)
dt = 1, i.e. the particle moves to the right. Once

the particle has made contact with the wall at w = 1, Σ(t) must jump to 1 so that dw(t)
dt+

= 0 in order to prevent
the particle from violating the condition w(t) ≤ 1. Thus, if t⋆ denotes the t when w(t) hits the wall, then we have
Σ(t) = 0 for t < t⋆ and Σ(t) = 1 for t > t⋆. The choice of Σ(t) at t⋆ itself is arbitrary and does not affect the DCP.

Throughout our derivations, we will search for a Σ(t) that is right-continuous, e.g. in the above setting we would
define Σ(t⋆) = 1, so that the leftwards force is applied the instant that w(t) reaches 1.

To turn eq. (DCP) into an ordinary differential equation with an explicit right-hand side, we will now prove some
additional constraints that the system must satisfy.

First, we prove that if A(w(t)) ⪰ 0 for all times t, then the right derivative d
dt+

A(w(t)) must be PSD over the
subspace kerA(w(t)). We abbreviate A(w(t)) as A(t).

Lemma 4 (Semidefinite Tangent Cone). Let A : R→ Sym(Rd) be a matrix-valued function such that A(t) ⪰ 0 for
all t. If A is right-differentiable at t, d

dt+
A(t) ⪰U 0 where U = kerA(t). If A is differentiable at t, d

dtA(t) =U 0.

Proof. Let u ∈ kerA(t). Then for any ϵ > 0,

u⊤
[
A(t+ ϵ)−A(t)

ϵ

]
u = u⊤

[
A(t+ ϵ)

ϵ

]
u ≥ 0.

Taking ϵ → 0 proves that d
dt+

A(t) ⪰ U 0. By reversing time if A is left differentiable at t then d
dt−

A(t) ⪯ U 0.

Combining these inequalities shows that if A is differentiable at t then d
dtA(t)

∣∣
U = 0.

74

Next, we show that if the complementarity relation 0 ⪯ Σ(t) ⊥ A(w(t)) ⪰ 0 holds for all times t, then the right
derivative d

dt+
A(w(t)) must satisfy its own complementarity relation: 0 ⪯ Σ(t) ⊥ d

dtA(w(t)) ⪰kerA(w(t)) 0.

Lemma 5 (Differentiating the complementarity relation). If A : R → Sym(Rd) is right-differentiable at t, 0 ⪯
Σ(t) ⊥ A(t) ⪰ 0 for all t, and Σ(·) is right-continuous at t, then 0 ⪯ Σ(t) ⊥ d

dt+
A(t) ⪰U 0 where U = kerA(t).

Proof. The only condition that needs to be checked is Σ(t) ⊥ d
dt+

A(t), since Σ(t) ⪰ 0 is given and d
dt+

A(t) ⪰U 0
is implied by Lemma 4. By assumption, for any ϵ > 0, we have Σ(t+ ϵ) ⊥ A(t+ ϵ), which implies:〈

Σ(t+ ϵ),
A(t+ ϵ)−A(t)

ϵ

〉
= −

〈
Σ(t+ ϵ),

A(t)

ϵ

〉
≤ 0.

Taking ϵ → 0 and using right-continuity of Σ(·) implies
〈
Σ(t), d

dt+
A(t)

〉
≤ 0. But also,

〈
Σ(t), d

dt+
A(t)

〉
≥ 0 as

both are PSD matrices by Lemma 4. This implies that
〈
Σ(t), d

dt+
A(t)

〉
= 0.

Note that as discussed in Appendix A.1.6, throughout the rest of this work, when we write dw
dt we either mean dw

dt+
or

we mean that the statement holds for almost all t.

Now we have enough information to solve for Σ(t). Explicitly, if U(w) := kerA(w), we can define

α(w) := ∇A(w)[f(w)] ∈ Sym(Rd), β(w) := ∇A(w)B(w) ∈ Sym(Rd)⊗2.

Lemma 6. If w(t),Σ(t) satisfy eq. (DCP) for almost all t, and Σ(·) is right-continuous, then

Σ(t) ∈ SDCPU(w) (α(w(t)), β(w(t)))

for all t, where U(w) = kerA(w). Furthermore if β(w(t)) is symmetric positive definite as an operator on
Sym(U(w)) for all t, then Σ(t) = Σ(w(t)) is unique.

Proof. First, Lemma 5 implies that

0 ⪯ Σ(t) ⊥ d
dtA(w(t)) ⪰U(w(t)) 0

where U(w) = kerA(w(t)). By the chain rule,

d

dt
A(w(t)) = ∇A(w(t))

[
dw

dt

]
= ∇A(w(t))[f(w(t)) +B(w(t))[Σ(t)]].

Therefore, using that Σ ∈ Sym(U(w)), we can expand d
dtA(w(t)) as:

d

dt
A(w(t)) = α(w(t)) + β(w(t))[Σ(t)],

which implies that:
Σ(t) ∈ SDCPU(w(t)) (α(w(t)), β(w(t))).

This lets us turn eq. (DCP) into an ODE:

dw

dt
= f(w) +B(w)[Σ] where Σ ∈ SDCPU(w) (α(w), β(w))

α(w) := ∇A(w)[f(w)], β(w) := ∇A(w)B(w), U(w) := kerA(w)
(DCP to ODE)

75

We can also define an equivalent basis-dependent version of this ODE, which makes clear that simulating the ODE
only requires time and space that scale linearly in the dimension d. For each t, let U ∈ Rd×k denote a basis for the
critical subspace U(w(t)), where k = dimU(w(t)). Then we can write eq. (DCP) in terms of U as follows:

dw

dt
= f(w) +B(w)[UXU⊤]

X ∈ SDCPRk(αU (w), βU (w))

αU (w) := U⊤α(w)U ∈ Sym(Rk)

βU (w)[X] := U⊤
(
β(w)[UXU⊤]

)
U ∈ Sym(Rk) ∀X ∈ Sym(Rk).

(DCP to ODE, basis dependent)

Thus, to compute dw
dt , one need only compute αU ∈ Sym(Rk) and βU ∈ Sym(Rk)⊗2, then solve a k-dimensional

SDCP to obtain X ∈ Sym(Rk), then form dw
dt in terms of X .

In practice, due to nonsmoothness of the DCP, we do not discretize it by computing dw
dt and then taking Euler steps.

Instead, we discretize the DCP directly, as described below in Appendix A.6.1.

Relation to the broader DCP literature In the literature on differential complementarity problems, it is a standard
practice to turn a DCP into an ODE by differentiating the constraints. In particular, eq. (DCP) is known as a pure
index-one DCP (Stewart, 2011, Section 5.2.1), because it needs to be differentiated exactly once in order to be turned
into an explicit ODE.

Existence and uniqueness of the ODE Existence and uniqueness for projected gradient flows (including the
gradient descent central flow) is guaranteed by Cornet (1983), under the assumption that β(w) is positive definite
over Sym(U(w)) for all w, where U(w) = kerA(w) denotes the critical subspace. We view this assumption as
mild. Existence and uniqueness can be argued for DCPs more generally (including the other central flows) under the
assumption that β is positive definite over all Sym(Rd) (Stewart, 2011). However, this assumption is too strong for
our setting; indeed, for gradient descent, β has rank at most d and hence cannot span the d(d+1)

2 dimensional space of
Sym(Rd) whenever d > 1. However, we suspect that under additional reasonable regularity conditions, this could be
relaxed to a condition that β need only be positive definite over Sym(kerA(w)).

Smoothness of the ODE The ODE is non-smooth at breakpoints where the dimension of U(w) = kerA(w)
changes. In between the breakpoints, Σ(t) is continuous and w(t) is differentiable. Moreover, the solution to
the SDCP is given by the linear inverse Σ(t) = Uβ−1

U (w)[αU (w)]U
⊤ and we have d

dtA(t)
∣∣
U(w)

= 0. At the
breakpoints, however, Σ(t) is discontinuous and w(t) is not differentiable (although they are right-continuous and
right-differentiable, respectively)

A.6.1 Discretizing the DCP

We now describe how we discretize eq. (DCP) in practice. Let ϵ > 0 denote the discretization step size, and consider
a grid of time steps T = {t0, t1, . . . , tN} that are spaced apart by ϵ. For any t ∈ T , let w(t) denote our estimate for
the central flow’s w(t), and let Σ(t) denote our estimate for the central flow’s Σ(t). In what follows, we will use
t ∈ T to denote the current time step and t+ ϵ ∈ T to denote the next one.

It is not immediately trivial to discretize eq. (DCP) using time-stepping. For example, it doesn’t make sense to search
for a pair w(t+ϵ), Σ(t) that satisfies

w(t+ϵ) = w(t) + ϵ
(
f
(
w(t)

)
+B

(
w(t)

)[
Σ(t)

])
and 0 ⪯ Σ(t) ⊥ A

(
w(t)

)
⪰ 0,

as this would always be satisfied by Σ(t) = 0. We could instead search for a pair w(t+ϵ), Σ(t) which satisfies

w(t+ϵ) = w(t) + ϵ
(
f
(
w(t)

)
+B

(
w(t)

)[
Σ(t)

])
and 0 ⪯ Σ(t) ⊥ A

(
w(t+ϵ)

)
⪰ 0,

76

where the complementarity constraint is enforced at time t+ ϵ, rather than at time t. However, it is still difficult to
handle this constraint due to the nonlinearity of A. We will therefore linearize A around w(t). Define Alin(w) as the
linearization of A around the current point w(t):

Alin(w) := A
(
w(t)

)
+∇A

(
w(t)

)[
w − w(t)

]
. (170)

We can therefore look for a choice of w(t+ϵ) and Σ(t) that together satisfy

w(t+ϵ) = w(t) + ϵ
(
f
(
w(t)

)
+B

(
w(t)

)[
Σ(t)

])
and 0 ⪯ Σ(t) ⊥ Alin

(
w(t+ϵ)

)
⪰ 0. (171)

This implies the following set of conditions on Σ(t) alone:

0 ⪯ Σ(t) ⊥ A
(
w(t)

)
+ ϵ ∇A

(
w(t)

)[
f
(
w(t)

)
+B

(
w(t)

)[
Σ(t)

]]
, (172)

which we recognize as precisely an SDCP:

Σ(t) ∈ SDCPRd

(
A
(
w(t)

)
+ ϵ∇A

(
w(t)

)[
f
(
w(t)

)]
, ϵ∇A

(
w(t)

)
B
(
w(t)

))
. (173)

Thus one could solve for Σ(t) above, and then take an Euler step on w:

w(t+ϵ) ← w(t) + ϵ
(
f
(
w(t)

)
+B

(
w(t)

)[
Σ(t)

])
.

Unfortunately, it is not possible to directly run this “idealized” time-stepping scheme, as it is impractical to formulate
or solve an SDCP over Rd. Therefore, we instead approximate it by projecting it onto the bottom eigendirections
of A which are “close” to the stability threshold at 0. In particular, if U ∈ Rd×k is a basis of these directions and
U = spanU , then we require Σ(t) ∈ Sym(U), and we enforce:

0 ⪯ Σ(t) ⊥ Alin
(
w(t+ϵ)

)
⪰U 0. (174)

This boils down to an SDCP over the low-dimensional subspace U :

Σ(t) ∈ SDCPU

(
A
(
w(t)

)
+ ϵ∇A

(
w(t)

)[
f
(
w(t)

)]
, ϵ∇A

(
w(t)

)
B
(
w(t)

))
. (175)

As described in Appendix A.1.4, solving this SDCP only requires solving a k-dimensional SDCP:

Σ(t) = U X(t)U⊤, X(t) = SDCP
(
AU

(
w(t)

)
+ ϵ αU

(
w(t)

)
, ϵ βU

(
w(t)

))
, (176)

where AU (w) ∈ Sym(Rk), αU (w) ∈ Sym(Rk), and βU (w) ∈ Sym(Rk)⊗2 are defined as

AU (w) := U⊤A(w)U, (177)

αU (w) := U⊤[∇A(w)[f(w)]]U, (178)

βU (w)[X] := U⊤
[
∇A(w)

[
B(w)

[
UXU⊤

]]]
U. (179)

Then, we update the weights using:

w(t+ϵ) = w(t) + ϵ
(
f
(
w(t)

)
+B

(
w(t)

)[
UX(t)U⊤

])
.

For the central flows in this work, A and B are such that αU βU , and dw
dt can be computed efficiently.

Correctness of this discretization scheme Under suitable conditions on f,A,B, this time-stepping scheme will
converge to the solution of the DCP as ϵ→ 0 (Stewart, 2011). For technical reasons involving the rank of∇AB, our
paper will not rigorously prove the convergence of this time-stepping scheme for our central flows. However, we do
empirically observe that the dynamics converge to a limiting curve as ϵ→ 0.

77

A.7 Continuous-time approximation to an EMA

In this appendix, we justify our choice for the continuous-time approximation to an EMA.

Consider a discrete-time exponential moving average (EMA) of a process f(t):

νt = β2νt−1 + (1− β2)f(t). (180)

What is a good continuous-time approximation ν(t) to νt? This question arises when we derive stable and central
flows for Scalar RMSProp and RMSProp (where f is the squared gradient norm or the elementwise squared gradient,
respectively).

Subtracting νt−1 from both sides of eq. (180) and rearranging yields:

νt − νt−1 = (1− β2)(ft − νt−1). (181)

This suggests the following continuous-time approximation to eq. (180):

ν ′(t) = (1− β2)(f(t)− νt). (182)

However, this approximation breaks down for small β2. Indeed, as β2 → 0, the discrete-time EMA eq. (180) adapts
“infinitely fast” so that νt ≈ f(t), yet the naive continuous-time approximation eq. (182) does not have this property.
Therefore, to obtain a continuous-time approximation that works well even for small β2, we use the following
alternative approximation:

ν ′(t) =

(
1− β2
β2

)
(f(t)− ν(t)). (183)

The β2 in the denominator ensures that when β2 ≈ 0, ν(t) adapts “infinitely” fast to f(t).

To give intuition for our approximation eq. (183), suppose that we are using an EMA to track a one-dimensional
linear process f(t) (i.e. f ′(t) is constant). Then both the discrete and continuous time EMA’s have closed forms. The
closed-form solution to the discrete time EMA eq. (180) can be written as:

νt = f(t− τ︸ ︷︷ ︸
time-lag

) + βt
2[ν0 − f(−τ)]︸ ︷︷ ︸

burn in

where τ :=
1− β2
β2

. (184)

Since the burn-in term vanishes exponentially with time, the steady state is that νt will track f(t) with a “time delay”
of τ := β2

1−β2
.

Similarly, for a continuous-time EMA of the form ν ′(t) = γ[f(t)− ν(t)] for some γ, the general solution is:

ν(t) = f(t− τ︸ ︷︷ ︸
time-lag

) + e−γt[ν(0)− f(−τ)]︸ ︷︷ ︸
burn in

where τ := 1/γ. (185)

Thus, the steady state is that v(t) will track f(t) with a “time delay” of τ = 1/γ.

To ensure that the continuous-time EMA asymptotically matches the discrete-time EMA, we need to set γ so that the
time delays match:

β2
1− β2

=
1

γ
=⇒ γ =

1− β2
β2

,

This motivate our choice of scaling factor in eq. (183).

Note that if we instead wanted to match the burn in, we would set γ = log(1/β2). However, we believe it is more
important to match the time-lag than the burn in.

78

A.8 Miscellaneous math

Here, we state some miscellaneous mathematical facts that are used elsewhere.

Fact 1. Let L(w) be three-times differentiable, and let S(w) := λ1(H(w))) denote the top Hessian eigenvalue.
Suppose that the top Hessian eigenvalue at w has multiplicity 1, and let u be the top Hessian eigenvector at w. Then,
for w = w + xu, we have:

∇L(w) = ∇L(w) + S(w)xu+ x2

2 ∇S(w) + o(x2). (186)

Proof. We begin by writing the Taylor expansion of∇L(w) around w:

∇L(w) = ∇L(w) +H(w)xu+ x2

2 ∇
3L(w)[u, u] + o(x2). (187)

Because u is an eigenvector of H(w) with eigenvalue S(w), the second term can be simplified to S(w)xu. Finally,
by Danskin’s theorem (or equivalently the standard formula for the derivative of an eigenvalue):

∇wS(w) = ∇w

[
max
∥v∥=1

vTH(w)v

]
= ∇w

[
uTH(w)u

]
= ∇3L(w)[u, u] (188)

where u is the argmax of the second expression, i.e. the top eigenvector of the Hessian at w.

Fact 2. For PSD matrices X,Y ⪰ 0, it holds that tr(XY) = 0 if and only if spanX ⊥ spanY .

Proof. First, if spanX ⊥ spanY , then spanY ⊆ kerX . Thus, it must hold for every u that XY u = 0, implying
that XY = 0 and hence tr(XY) = 0.

For the other direction, assume that tr(XY) = 0. Then:

0 = tr(XY) = tr
(
Y 1/2X1/2X1/2Y 1/2

)
=
∥∥∥X1/2Y 1/2

∥∥∥2
F
.

Since X,Y are PSD, so is X1/2Y 1/2, and hence its norm can only be zero if X1/2Y 1/2 = 0. Multiplying on the
right by Y 1/2 and the left by X1/2 gives XY = 0. This implies that spanX ⊥ spanY , as for any x ∈ spanX and
y ∈ spanY , we have x = Xu and y = Y v for some u, v, and so

x⊤y = (Xu)⊤(Y v) = u⊤XY v = 0.

Note that since the span of a symmetric matrix is orthogonal to its kernel, spanX ⊥ spanY is equivalent to
spanX ⊆ kerY and to spanY ⊆ kerX . Thus the following corollary is immediate:

Corollary 1. For PSD matrices X,Y ⪰ 0, it holds that tr(XY) = 0 if and only if spanX ⊆ kerY .

79

B Experimental Details

B.1 Implementation details

Our code can be found at: http://github.com/centralflows/centralflows.

In order to reuse code between the central flows for gradient descent, Scalar RMSProp, and RMSProp, we cast all three
optimizers as instances of the generic adaptive preconditioned method that is described in Appendix A.5. This template
assumes that the weights are updated via a preconditioned gradient step of the form wt+1 = wt − P (νt)

−1∇L(wt),
where P (νt) is a preconditioner that is derived from some optimizer state νt that is in turn updated based on the
gradients. For example, for gradient descent with learning rate η, the preconditioner is simply P = η−1I . The
effective Hessian is defined as P (νt)

−1H(wt), and the EOS condition is that the largest eigenvalue of this matrix (the
effective sharpness Seff) is 2. See Appendix A.5 for more information.

Eigenvalue computation To regularly recompute the top eigenvalues and eigenvectors of the effective Hessian, we
use the LOBPCG algorithm (Knyazev, 2001), which only requires access to the Hessian via Hessian-vector products,
and which allows us to warm-start using the previously computed eigenvectors. We were originally inspired by the
LOBPCG implementation in Jax’s jax.experimental.sparse.linalg (Bradbury et al., 2018).

How many eigenvalues to track? For all processes (i.e. discrete optimizers, central flows, stable flows), we
track all eigenvalues of the effective Hessian that are above the threshold 1.5. We then track the same number of
eigenvalues of the Hessian. Note that for gradient descent and Scalar RMSProp the Hessian eigenvalues are trivially
related to the effective Hessian eigenvalues, whereas for RMSProp we need to do an extra eigenvalue solve to obtain
the Hessian eigenvalues.

Discretizing the stable flow To discretize the stable flows (e.g. gradient flow), we use Euler’s method. To
discretize for one unit of time, we pick some integer nsubsteps, we set ϵ = 1/nsubsteps, and we repeat
w ← w + ϵ dw

dt for nsubsteps times. We dynamically adapt nsubsteps based on the current effective sharpness
Seff. The basic criterion of update stability requires that ϵ < 2/Seff. To be on the safe side, and to guard against any
implicit discretization effects, we enforce the stronger condition that ϵ < 0.5/Seff, or equivalently that nsubsteps
≥ ⌈2Seff⌉. We also enforce a floor of nsubsteps ≥ 4. Thus, we set nsubsteps = max(4, ⌈2Seff⌉).

Since discretizing the stable flow would take a prohibitively long time in regions of weight space where the effective
sharpness is too high, we automatically terminate the stable flow if the effective sharpness exceeds a certain threshold
(we used 100).

Discretizing the central flow To discretize the central flows, we use the scheme described in Appendix A.5.1. This
is in turn an instance of the general scheme described in Appendix A.6.1 for discretizing differential complementarity
problems. At each discretization time step, we do the following:

1. We compute the top eigenvalues and eigenvectors of the effective Hessian P (ν)−1H(w). In particular, we
compute all eigenvalues greater than 2 − τ for some small tolerance τ > 0 (we use 0.05), as well as the
corresponding eigenvectors. Let k be the number of such eigenvalues. To compute eigenvalues of the non-
symmetric matrix P (ν)−1H(w), we first use warm-started LOBPCG to compute the eigenvalues D ∈ diag(Rk)
and orthonormal eigenvectors Ũ ∈ Rd×k of the symmetric matrix P (ν)−1/2H(w)P (ν)−1/2. The eigenvalues
of P (ν)−1H(w) are then D, and the eigenvectors are U = P (ν)−1/2Ũ ∈ Rd×k. Note that these eigenvectors
are orthonormal w.r.t the preconditioner P (ν), i.e. U⊤P (ν)U = I .

2. We compute the third-derivative tensor ∇UH(w) ∈ Sym(Rk)⊗ Rd defined in eq. (158) by looping over all
pairs (ui, uj) of columns of U ∈ Rd×k and computing the third derivative∇w[u

⊤
i H(w)uj] ∈ Rd, which can

be done using automatic differentiation. Note that due to the symmetry, it is only necessary to compute and
store the

(
k+1
2

)
“upper triangular” entries of this tensor, rather than the full k2.

3. We compute the tensor ∇PU (ν) ∈ Sym(Rk)⊗ Rdν defined in eq. (158), which measures the gradient of the
preconditioner w.r.t the optimizer state ν ∈ Rdν . Our implementation uses automatic differentiation to do this,

80

http://github.com/centralflows/centralflows

though one could also simply hard-code the derivatives for the various optimizers of interest. We similarly
compute the tensor∇2GPU (ν, g(w)) ∈ Rdν ⊗Sym(Rk) defined in eq. (159), where g(w) = ∇L(w) and dν is
the dimension of the optimizer state ν. This tensor measures the Hessian of the optimizer state w.r.t the gradient
of the weights. For these tensors, we also only need to compute and store the

(
k+1
2

)
upper triangular entries.

4. Using∇HU (w),∇PU (ν), and∇2GPU (ν, g(w)), we compute the tensors αU (w, ν) ∈ Sym(Rk) and βU (w, ν) ∈
Sym(Rk)⊗2 defined in eqs. (163) and (164). Here we simply materialize the full tensors, as k is small.

5. We solve the semidefinite complementarity problem:

X = SDCPRk(2I − Λ + ϵ αU , ϵ βU).

We do so by formulating the SDCP as a semidefinite-constrained quadratic program eq. (54), as described in
Appendix A.1.4, and solving this using the convex programming library cvxpy.

6. We take an Euler step of size ϵ on the weights w and optimizer state ν, as given in eqs. (168) and (169).

To discretize the flow for one unit of time, we pick some integer nsubsteps, set the discretization step size as
ϵ = 1/nsubsteps, and repeat the above process for nsubsteps times. Note that because the central flows keep
the effective sharpness controlled at 2, it is not necessary to dynamically adapt nsubsteps throughout training,
as nsubsteps ≥ 2 always sufffices to ensure stability. We therefore used the fixed values nsubsteps = 4 and
ϵ = 0.25.

The computational cost of each discretization step is dominated by the cost of computing the top eigenvalues and
eigenvectors in step 1 above, as well as the cost of computing the third derivatives in step 2 above. The computational
cost of the rest of the steps (including solving the SDCP) is negligible. The time complexity of each discretization
step scales quadratically with the number of eigenvalues that are at the edge of stability, k, as

(
k+1
2

)
= Θ(k2) third

derivatives need to be computed.

Verifying the central flow To assess whether the central flow accurately models the discrete optimizer, we run
both processes simultaneously. That is, we repeatedly both (a) take a step on the discrete optimizer; and (b) discretize
the central flow for one unit of time. Let wt denote the discrete optimizer’s iterate at step t, and let w(t) denote our
estimate for the central flow solution at time t.

To verify that the central flow approximates the long-term weight-space trajectory of the discrete optimizer, we record
∥w(t) − wt∥, the Euclidean distance between the discrete optimizer and the central flow.

We use eqs. (165) and (166) to compute the central flow’s predictions for the time-average of the train loss and
squared gradient norm. For any quantity f (e.g. loss or squared gradient norm), let f̄(w(t)) denote the central flow’s
prediction for the time-average of f at step/time t. To assess the accuracy of this prediction, we compare {f̄(w(t))}
against a Gaussian smoothing of the empirical time series {f(wt)}. That is, for each t, we compare:

f̄(w(t)) vs.

(
1∑
j cj

)∑
j

cjf(wt+j) where cj = exp

(
− j2

2σ2

)
,

where σ2 is the bandwidth of the Gaussian kernel. We describe below momentarily how we determine σ2.

When predicting the covariance of the oscillations, we compare both sides of eq. (157). Let (λ(t)
i , v

(t)
i) denote the i-th

eigenvalue and eigenvector of the matrix P 1/2(ν(t)) Σ(t) P 1/2(ν(t)), and define x(t)i :=
〈
v
(t)
i , P 1/2(ν(t))(w(t)− wt)

〉2
.

Then for each eigenvalue index i, we compare the predicted time series {λ(t)
i } against a Gaussian smoothing of the

empirical time series {x(t)i }. For gradient descent and Scalar RMSProp, where P is a scalar, we post-hoc rescaled
both quantities by P so as to report the oscillations in terms of Σ rather than P 1/2ΣP 1/2.

For some plots (e.g. those in the main paper), we picked the Gaussian kernel’s bandwidth by visual inspection (we
emphasize that it is not possible to turn a bad prediction into a good prediction by adjusting the bandwidth). In fact,

81

for some figures (e.g. Figures 15 and 18), we found it best to re-tune the bandwidth within an experiment, whenever
the number of unstable eigenvalues underwent a change. On the other hand, for the plots on the “bulk” experiments
section (Appendix E), we picked a single bandwidth somewhat arbitrarily and used this for all experiments.

Warm-start In our experiments, we first run the discrete optimizer for 10-15 steps and then use this as an
initialization for the discrete optimizer, central flow, and stable flow. The first reason why we do this is that the
effective sharpness is sometimes much larger than 2 at the original initialization (particularly for the adaptive
optimizers), yet comes down below 2 within the very first few steps of training. (The central flow is not currently
defined when the effective sharpness is greater than 2.) Another reason is that even when the effective sharpness is
less than 2 at initialization, we observed that the quality of the central flow approximation is sometimes enhanced by
this warm start. This is potentially due to the size of the gradients during the first few steps, and the central flow could
possibly be improved during this phase by incorporating the implicit gradient norm penalty from Barrett and Dherin
(2021). However, we think it is likely that this source of deviation between the discrete optimizer and the stable /
central flows is negligible in the long run (see Appendix C.1), and thus we hypothesize that the warm-starting could
be removed in cases where the effective sharpness is less than 2 at initialization.

Second-order midpoints When reporting metrics from the discrete optimizers (gradient descent, Scalar RMSProp,
and RMSProp, as opposed to their central flows), we usually report the top Hessian eigenvalues measured not at the op-
timizer iterates {wt} themselves, but at the (second order) midpoints {ŵt}, defined as ŵt :=

1
4 [2wt − wt−1 − wt+1]

(so named because it is the midpoint of the midpoints 1
2 [wt − wt−1] and 1

2 [wt+1 − wt]). This empirically makes the
Hessian trajectories slightly crisper (less “noisy”), while not altering the fundamental patterns.

B.2 Architecture details

Here we describe our architectures. Note that our code for all architectures can be found at:
http://github.com/centralflows/centralflows.

Both our derivations and the analytic formulas for the central flows rely on higher-order information about the loss
function (e.g. Hessians and third derivatives). As a result, we require that all of the architectures are smooth. This
rules out the commonly used ReLU activation (Nair and Hinton, 2010).

CNN Our CNN has four layers, an initial channel width of 32, and 3x3 convolutional kernels. It uses the GeLU
activation function, average pooling, and a linear readout layer.

ResNet We use a ResNet (He et al., 2016) with 20 layers and GeLU activations. We use GroupNorm (Wu and
He, 2018) in place of BatchNorm (Ioffe and Szegedy, 2015), as we empirically find that BatchNorm often leads to
sub/super-quadraticity (see the discussion in Appendix C.2).

Vision Transformer We use the Vision Transformer (ViT) (Dosovitskiy et al., 2021) implementation from
LucidRains (2024). Our ViT has depth 3, embedding dimension 64, number of heads 8, MLP dimension 256, and
patch size 4. We initialize the weights and biases of the final linear layer to 0.5 times the default, as this makes the
curvature lower at initialization, which allows us to run gradient descent experiments at a broader range of learning
rates. For unknown reasons, we found that the core PyTorch LayerNorm implementation (written in C++) leads to
third derivatives being computed incorrectly; thus, we substituted in an alternative implementation written in vanilla
PyTorch, which empirically fixed the issue.

LSTM Our LSTM (Hochreiter and Schmidhuber, 1997) has 2 layers, an embedding dimension of 48, and a hidden
dimension of 48.

(Sequence) Transformer Our sequence transformer has 4 layers, an embedding dimension of 32, an MLP
dimension of 128, and 4 attention heads. We disabled dropout, to make the network deterministic. As with the ViT
(see above), we initialize the weights and biases of the final linear layer to be zero, and we substitute a vanilla PyTorch
LayerNorm implementation in place of the default C++ LayerNorm implementation.

82

http://github.com/centralflows/centralflows

Mamba We use the Mamba (Gu and Dao, 2024) implementation from Torres-Leguet (2024). Our Mamba has 2
layers and a model dimension of 64. Unfortunately, the efficient Mamba kernel based on parallel scan did not work
with PyTorch higher-order autotiff, so we needed to use the naive implementation of Mamba, which is slow.

B.3 Dataset details

Here we describe our datasets. The code can be found at:
http://github.com/centralflows/centralflows.

CIFAR-10 We test the vision architectures on a subset of CIFAR-10 that contains 1000 training examples, all from
the first 4 CIFAR-10 classes. We use the standard preprocessing of subtracting the dataset-wide channel-wise mean,
and dividing by the dataset-wide channel-wise standard deviation. When training using MSE loss, we encode the
ground truth class as 1 and the others as 0.

Sorting We test the sequence architectures on the synthetic sorting task described in Karpathy (2020). The network
is fed a sequence of numbers and is then tasked (via a language modeling loss) with returning these numbers in sorted
order. We used numbers 1 through 4, and sequences of length 8. The size of the training datraset was usually 1,000
(except for Mamba, where it was 250).

83

http://github.com/centralflows/centralflows

C Miscellaneous

C.1 Implicit gradient regularization

Recall from Section 3.2 that when gradient descent is stable, we approximate its trajectory by the gradient flow:

dw

dt
= −η∇L(w). (189)

In particular, the central flow automatically reduces to eq. (189) whenever sharpness S(w) < 2/η.

On the other hand, Barrett and Dherin (2021) argued that gradient descent with step size η should instead be
approximated by a modified gradient flow with a penalty on the squared gradient norm:

dw

dt
= −η∇

[
L(w) +

η

4
∥∇L(w)∥2

]
, (190)

= −η
[
∇L(w) + η

2
H(w)∇L(w)

]
. (191)

Subsequently, Rosca et al. (2023) showed how to improve the approximation by incorporating higher-order penalties,
and Cattaneo et al. (2024) extended the approach to adaptive optimizers.

Empirically, we find that in the stable regime, the modified gradient flow eq. (190) is indeed a better approximation
to gradient descent than the vanilla gradient flow eq. (189). This observation is illustrated in Figure 25. However,
all things considered, we observe that in the stable regime, the vanilla gradient flow is already a good enough
approximation to gradient descent (Figure 25). While gradient descent does differ from gradient flow in deep learning,
the vast majority of this difference appears to be due to the curvature-reduction effect of oscillations in the edge
of stability regime, not to discretization error that manifests even in the stable regime. This point is illustrated in
Figure 26. Thus, in the interest of simplicity, we left out any implicit gradient regularizer from our central flows.

0 500 1000 1500
step

0.2

0.3

0.4

0.5
train loss

0 500 1000 1500
step

0.0

0.1

0.2

0.3

0.4
gradient norm2

0 500 1000 1500
step

0

50

100

150

200

max hessian eigenvalue (sharpness)

0 500 1000 1500
step

0.2

0.4

network output #1

0 500 1000 1500
step

0.05

0.10

0.15

network output #2

0 500 1000 1500
step

0.000

0.001

0.002

0.003

0.004
distance to gradient descent

gradient descent
gradient flow
+ IGR penalty

Figure 25: In the stable regime, the IGR penalty marginally improves the accuracy of the gradient flow
approximation, but this accuracy is already good. We train a network using gradient descent (blue), vanilla
gradient flow eq. (189) (orange, dashed) and gradient flow with the IGR penalty eq. (191) (green, dotted), all with
η = 0.01. This figure shows the initial phase of training, when gradient descent is in the stable regime (i.e. sharpness
is below 2/η). Consistent with Barrett and Dherin (2021), notice that in the stable regime, gradient flow + IGR is a
visibly better approximation to gradient descent than vanilla gradient flow. In particular, observe that the distance
to the gradient descent trajectory is smaller for gradient flow + IGR than for vanilla gradient flow (bottom right).
Similarly, note that the network outputs on two examples, the train loss, and the squared gradient norm agree better
under gradient flow + IGR than under vanilla gradient flow. That said, notice that even the vanilla gradient flow
is a good approximation to gradient descent in this regime. Please refer to Figure 26 for the continuation of this
experiment into the EOS regime. Details: a CNN is trained on a subset of CIFAR-10 using MSE loss.

84

0 1000 2000 3000 4000
step

0.2

0.4

train loss

0 1000 2000 3000 4000
step

0

10

20

30

gradient norm2

0 1000 2000 3000 4000
step

0

500

1000

1500

2000
max hessian eigenvalue (sharpness)

0 1000 2000 3000 4000
step

0.2

0.4

0.6

0.8

network output #1

0 1000 2000 3000 4000
step

0.1

0.2

0.3

0.4

network output #2

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8
distance to gradient descent

gradient descent
... smoothed
gradient flow
+ IGR penalty
central flow

Figure 26: In the EOS regime, the central flow accurately approximates the trajectory of gradient descent,
whereas neither the original nor the IGR-penalized gradient flow does so. We continue the experiment from
Figure 25 for more iterations, into the EOS regime. Observe that neither the original gradient flow (orange, dashed)
nor the IGR-penalized gradient flow (green, dotted) reasonably approximates the trajectory of gradient descent (blue)
in this regime, whereas the central flow (black, dashed) does so. In particular, notice that the distance from gradient
descent to the central flow stays small, whereas the distance to both the original and IGR-penalized gradient flows
grows large over time (bottom right). Further, the central flow accurately predicts the time-averaged network outputs
on two examples, as well as the train loss and squared gradient norm.

A subtle confounder Some works (e.g. Geiping et al. (2022)) have observed that adding an explicit squared
gradient norm penalty can help full-batch training recover the superior generalization performance of minibatch
training. This would seem to support the argument of Barrett and Dherin (2021) that the implicit regularization of
discrete gradient descent can be captured by a flow with a squared gradient norm penalty. Yet, we believe that these
results could be instead due to a subtle confounder: adding a squared gradient norm penalty changes the oscillatory
EOS dynamics, and in particular, enhances the implicit curvature regularization.

Consider running gradient descent with step size η, while adding an implicit gradient regularizer corresponding to
some step size τ . The update rule is:

wt+1 = wt − η
[
∇L(wt) +

τ
2H(wt)∇L(wt)

]
. (192)

On the one-dimensional quadratic function L(w) = 1
2Sw

2, the iterates would evolve according to:

wt+1 = wt − η
[
Swt +

τ
2S

2wt

]
= [1− ηS − 1

2ητS
2]wt. (193)

Whereas vanilla gradient descent is unstable if S > 2/η, this iteration is unstable if ηS + 1
2ητS

2 > 2 ⇐⇒ S >√
1+

4τ
η −1

τ , which is < 2
η . That is, it becomes unstable at lower values of the sharpness S. Accordingly, in line with

the general EOS pattern, we find that on neural network objectives, while gradient descent implicitly constrains the
sharpness to 2/η, the update rule eq. (192) implicitly constrains the sharpness to this strictly smaller value (Figure 27).
In other words, adding an explicit gradient norm penalty also results in stronger implicit curvature regularization. This
acts as a subtle experimental confounder, which could explain the reports in the literature that explicitly penalizing
the gradient norm substantially boosts generalization performance.

Thus, we hypothesize that if the the IGR-penalized gradient flow eq. (190) were properly discretized, it would not
yield improved generalization (as it would not substantially affect the trajectory). Yet, if an IGR-penalized objective

85

0 500 1000 1500 2000 2500 3000 3500 4000
step

0.1

0.2

0.3

0.4

0.5
train loss

GD with = 0.01 on L(w)
GD with = 0.01 on
 L(w) + 0.04

2 L(w) 2

0 500 1000 1500 2000 2500 3000 3500 4000
step

0

50

100

150

200

top Hessian eigenvalue (sharpness)

2/
1 + 4 / 1

Figure 27: A dangerous confounder: explicit gradient regularization induces stronger implicit curvature
regularization. We train a CNN on a subset of CIFAR-10 using MSE loss. In blue, we run gradient descent with
step size η = 0.01 on the original objective L(w). In orange, we run gradient descent with step size η = 0.01 on the
implicitly regularized objective L(w) + τ

4∥L(w)∥
2, with τ = 0.04. This mimics an attempt to capture the η = 0.04

dynamics with an explicit gradient regularizer. Observe that the explicit gradient regularizer implicitly affects the

curvature dynamics, causing the sharpness to saturate at
√

1+4τ/η−1

τ ≈ 78.08 instead of at 2/η = 200. We believe
that similar effects may be responsible for reports in the literature (e.g. Geiping et al. (2022)) that explicit gradient
norm regularization recovers the beneficial effects of large learning rates and small batch sizes.

is optimized using a standard optimization algorithm, this could induce stronger implicit curvature regularization
which substantially affects the trajectory and the generalization performance.

Momentum Finally, we note that it is plausible that the IGR effect is negligible for vanilla gradient descent but
relevant when momentum is used, as momentum amplifies the strength of the IGR effect (Ghosh et al., 2023).

C.1.1 Implementation details

To discretize the IGR-penalized gradient flow eq. (191), we used a forward Euler scheme:

w(t+dt) = w(t) − η ϵ
[
∇L(w(t)) + η

2H(w(t))∇L(w(t))
]
. (194)

We dynamically adapt the discretization step size ϵ based on the current sharpness (which we are already measuring).
On a quadratic function L(w) = 1

2Sw
2 with sharpness w, the Euler method eq. (194) is convergent so long as:

ϵ ≤ 2

ηS + 1
2η

2S2
.

To be on the safe side, and to try to avoid any implicit effects, we use a discretization step size of one-quarter that
threshold. In particular, at every integer time t, we compute the sharpness S(w), and set:

m = ⌈2ηS + η2S2⌉ and ϵ = 1/m,

and we take m Euler steps eq. (194) with discretization step size ϵ.

86

C.2 Failure mode: higher-order terms

Our theory models the objective using a local cubic Taylor approximation. Sometimes, however, a cubic Taylor
expansion is inadequate to capture the dynamics within the critical subspace, and this gives rise to a failure mode for
the central flow, which was previously discussed in Damian et al. (2023, Appendix F).

This failure mode is illustrated in Figure 28, which depicts a stretch of gradient descent where one eigenvalue is at
the edge of stability and where the cyclic EOS dynamics have collapsed to a period-2 fixed point. (This makes for a
simpler setting than the full cyclic dynamics, which helps us better illustrate the issue.) Observe that the sharpness
measured at the (second-order) midpoints between the gradient descent iterates is noticeably lower than 2/η, whereas
the sharpness along the central flow is strictly equal to 2/η. Further, observe that the actual squared displacement
between gradient descent and the central flow is noticeably different from the central flow’s prediction for this value,
σ2(t). This means that the central flow is applying the wrong strength of implicit sharpness regularization, which will
cause error to accumulate over the long run.

These issues arise because the loss function along the top Hessian eigenvector is not well-modeled by its cubic Taylor
expansion. In Figure 29, at various points during this stretch of training, we consider the line segment in between
two successive iterates {αwt + (1− α)wt+1 : 0 ≤ α ≤ 1}, and we plot the curvature quantity u⊤H(w)u along this
line, where u is the top Hessian eigenvector measured at the midpoint between the two iterates w. We also plot the
first-order Taylor approximation of this curvature quantity, S(w) +∇S(w)⊤(w − w), which arises from the local
cubic Taylor approximation, as well as the second-order Taylor approximation of this curvature quantity, which arises
from the local quartic Taylor approximation. Observe that the curvature along this line segment is not well-modeled
by its first-order Taylor approximation. This is an indicator that the cubic Taylor approximation which we employ in
our analysis is failing to hold within the local region that is being traversed via the oscillations.

By contrast, Figures 30 and 31 depicts a different deep learning problem where the central flow approximation is
more accurate, and where the local curvature is well-described by the cubic Taylor expansion.

Please see Damian et al. (2023, Appendix F) for an extended discussion of this issue, in the special case of one unstable
eigenvalue. In this setting, the loss function can either be super-quadratic along the top Hessian eigenvector, in which
case the real curvature lies above than its first-order Taylor approximation, and the curvature at the midpoint is less
than 2/η; or it can be sub-quadratic, in which case the real curvature lies below its first-order Taylor approximation,
and the curvature at the midpoint is greater than 2/η. When multiple eigenvalues are unstable, we expect that the loss
function could conceivably be subquadratic along some directions and superquadratic along others.

In the special case of one unstable eigenvalue, Damian et al. (2023) derived a correction to their constrained trajectory
(analogous to our central flow) which they empirically showed to match the real gradient descent trajectory even in the

1800 2000 2200 2400 2600
step / time

185

190

195

200

205

210

215
top Hessian eigenvalue

GD (2nd order midpoints)
central flow

1800 2000 2200 2400 2600
step / time

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

0.0300

variance of oscillations along
top Hessian eigenvector

displacement2 along
top Hessian eigenvector
central flow 2(t)

Figure 28: Illustrating this failure mode for the central flow approximation. This figure shows a segment of
training which suffers from the failure mode discussed here. Observe that the sharpness along the gradient descent
trajectory (measured at the second-order midpoints) is different from the sharpness of the central flow, which is locked
at 2/η. Further, the central flow poorly predicts the variance of the oscillations along the top Hessian eigenvector.
Details: a CNN is trained on a two-class subset of CIFAR-10 with logistic loss.

87

sub/super-quadratic setting. Interestingly, with this correction, the implicit regularizer still takes the form σ2∇S(w)
for some σ2; however, σ2 cannot be determined solely from the local cubic Taylor approximation, and instead requires
knowledge of the exact loss function along the top Hessian eigenvector direction. It would be interesting to re-derive
this correction under the central flow framework, and to extend it to the setting of multiple unstable eigenvalues.

0.0 0.2 0.4 0.6 0.8 1.0

160

180

200

220

240

260

cu
rv

at
ur

e

step 1900

0.0 0.2 0.4 0.6 0.8 1.0
160

180

200

220

240

cu
rv

at
ur

e

step 2200

0.0 0.2 0.4 0.6 0.8 1.0
160

180

200

220

240

cu
rv

at
ur

e

step 2500

real curvature
first-order
approximation
second-order
approximation

Figure 29: When the central flow fails, the local cubic structure poorly predicts local curvature. During the
stretch of training depicted in Figure 28, at three different steps, we plot the curvature metric u⊤H(w)u measured
along the line segment between the current iterate and the next one: αwt + (1 − α)wt+1, 0 ≤ α ≤ 1, where u
denotes the top Hessian eigenvector measured at the midpoint between the two iterates. Observe that this curvature
metric (blue) is poorly predicted by its linear approximation around the midpoint (orange), which is based on the
local cubic structure of the loss.

3200 3300 3400 3500 3600
step / time

185

190

195

200

205

210

215
top Hessian eigenvalue

GD (2nd order midpoints)
central flow

3200 3300 3400 3500 3600
step / time

0.0170

0.0175

0.0180

0.0185

0.0190

0.0195

variance of oscillations along
top Hessian eigenvector

displacement2 along
top Hessian eigenvector
central flow 2(t)

Figure 30: A success case for the central flow. This figure shows a segment of training which does not suffer from
this failure mode. Observe that the sharpness along the gradient descent trajectory (measured at the second-order
midpoints) is quite close to the sharpness along the central flow, which is locked at 2/η. Further, observe that the
central flow accurately predicts the variance of the oscillations along the top Hessian eigenvector. Details: a CNN is
trained on a two-class subset of CIFAR-10 with MSE loss.

0.0 0.2 0.4 0.6 0.8 1.0

196

198

200

202

204

cu
rv

at
ur

e

step 3300

0.0 0.2 0.4 0.6 0.8 1.0

196

198

200

202

204

cu
rv

at
ur

e

step 3400

0.0 0.2 0.4 0.6 0.8 1.0

196

198

200

202

204

cu
rv

at
ur

e

step 3500

real curvature
first-order
approximation
second-order
approximation

Figure 31: When the central flow succeeds, the local cubic structure accurately predicts local curvature. This
figure shows the same curvature metric as Figure 29, but in the “success case” setting of Figure 30. Observe that here,
the local curvature is well-predicted by its local linearization.

88

D Supplementary Figures

0 1000 2000 3000 4000
step

0.0

0.1

0.2

0.3

0.4

0.5
CNN

= 0.01
= 0.0133
= 0.02

central flows

0 1000 2000 3000 4000
step

0.10

0.15

0.20

0.25

0.30

0.35

ResNet
= 0.01
= 0.0133
= 0.02

central flows

0 1000 2000 3000 4000 5000 6000
step

0.10

0.15

0.20

0.25

0.30

0.35

ViT

= 0.01
= 0.0133
= 0.02

central flows

0 1000 2000 3000 4000 5000 6000
step

0.1

0.2

0.3

0.4

LSTM
= 0.0267
= 0.04
= 0.08

central flows

0 1000 2000 3000 4000 5000 6000
step

0.0

0.1

0.2

0.3

0.4

Transformer
= 0.02
= 0.0267
= 0.04

central flows

0 1000 2000 3000 4000 5000 6000
step

0.10

0.15

0.20

0.25

0.30

Mamba
= 0.005
= 0.01
= 0.02

central flows

Figure 32(a): Gradient descent: central flow predictions for loss curves (MSE). We compare the actual train loss
curve (faint colors) and its Gaussian-smoothed version (thick colors) to the central flow’s prediction eq. (23) for the
time-averaged loss curve (black dashed lines). Each subpanel is a different architecture, and each color is a different
learning rate. These plots use the mean squared error (MSE) loss; see Figure 32(b) for cross-entropy.

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
CNN

= 0.005
= 0.00667
= 0.01

central flows

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25

ResNet
= 0.01
= 0.0133
= 0.02

central flows

0 1000 2000 3000 4000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
ViT

= 0.01
= 0.0133
= 0.02

central flows

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
LSTM

= 0.0133
= 0.02
= 0.04

central flows

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

2.5

Transformer
= 0.01
= 0.0133
= 0.02

central flows

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

Mamba
= 0.01
= 0.0133
= 0.02

central flows

Figure 32(b): Gradient descent: central flow predictions for loss curves (CE). Similar to Figure 32(a), but for
cross-entropy loss. Here, the prediction is sometimes a bit off, especially at the end, and especially with larger
learning rates; as discussed in Section 6, the central flow tends to be somewhat less accurate with cross-entropy loss.

89

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4

0.5
CNN

= 0.005
= 0.01
= 0.02

central flows

0 500 1000 1500 2000 2500 3000
step

0.10

0.15

0.20

0.25

0.30

0.35

0.40
ResNet

= 0.007
= 0.01
= 0.02

central flows

0 1000 2000 3000 4000 5000 6000
step

0.15

0.20

0.25

0.30

0.35

0.40

ViT
= 0.01
= 0.02
= 0.03

central flows

0 2000 4000 6000 8000
step

0.1

0.2

0.3

0.4

LSTM
= 0.01
= 0.02
= 0.04

central flows

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4

0.5

Transformer
= 0.005
= 0.01
= 0.02

central flows

0 1000 2000 3000 4000 5000
step

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Mamba
= 0.005
= 0.01
= 0.02

central flows

Figure 33(a): Scalar RMSProp: central flow predictions for loss curves (MSE). We compare the actual train loss
curve (faint colors) and its Gaussian-smoothed version (thick colors) to the central flow’s prediction eq. (112) for the
time-averaged loss curve (black dashed lines). Each subpanel is a different architecture, and each color is a different
learning rate. These plots use the mean squared error (MSE) loss; see Figure 33(b) for cross-entropy.

0 1000 2000 3000 4000 5000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
CNN
= 0.003
= 0.006
= 0.01

central flows

0 500 1000 1500 2000 2500 3000
step

0.00

0.25

0.50

0.75

1.00

1.25

ResNet
= 0.01
= 0.02
= 0.03

central flows

0 1000 2000 3000 4000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
ViT
= 0.01
= 0.02
= 0.03

central flows

0 2000 4000 6000 8000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
LSTM
= 0.01
= 0.02
= 0.03

central flows

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5

Transformer
= 0.01
= 0.02
= 0.03

central flows

0 1000 2000 3000 4000 5000
step

0.4

0.6

0.8

1.0

1.2

1.4
Mamba

= 0.007
= 0.01
= 0.02

central flows

Figure 33(b): Scalar RMSProp: central flow predictions for loss curves (CE). Similar to Figure 33(a) but for cross
entropy loss.

90

0 500 1000 1500 2000 2500 3000
step

0.0

0.1

0.2

0.3

0.4

0.5
CNN

= 1e-05
= 2e-05
= 4e-05

central flows

0 500 1000 1500 2000 2500 3000
step

0.0

0.1

0.2

0.3

0.4

0.5
ResNet

= 2e-05
= 4e-05
= 0.0001

central flows

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8
ViT

= 1e-05
= 2e-05
= 3e-05

central flows

0 1000 2000 3000 4000
step

0.1

0.2

0.3

0.4

LSTM
= 1e-05
= 2e-05
= 4e-05

central flows

0 500 1000 1500 2000 2500
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Transformer

= 2e-05
= 4e-05
= 0.0001

central flows

0 1000 2000 3000 4000 5000
step

0.1

0.2

0.3

0.4

0.5
Mamba

= 1e-05
= 2e-05
= 4e-05

central flows

Figure 34(a): RMSProp: central flow predictions for loss curves (MSE). We compare the actual train loss curve
(faint colors) and its Gaussian-smoothed version (thick colors) to the central flow’s prediction eq. (120) for the
time-averaged loss curve (black dashed lines). Each subpanel is a different architecture, and each color is a different
learning rate. These plots use the mean squared error (MSE) loss; see Figure 33(b) for cross-entropy.

0 500 1000 1500 2000 2500 3000
step

0.00

0.25

0.50

0.75

1.00

1.25

CNN
= 7e-06
= 1e-05
= 2e-05

central flows

0 1000 2000 3000 4000
step

0.00

0.25

0.50

0.75

1.00

1.25

ResNet
= 1e-05
= 2e-05
= 4e-05

central flows

0 1000 2000 3000 4000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
ViT

= 5e-06
= 7e-06
= 1e-05

central flows

0 1000 2000 3000 4000 5000
step

0.00

0.25

0.50

0.75

1.00

1.25

LSTM
= 1e-05
= 2e-05
= 6e-05

central flows

0 500 1000 1500 2000 2500
step

0.5

1.0

1.5

2.0

2.5
Transformer

= 1e-05
= 2e-05
= 4e-05

central flows

0 1000 2000 3000 4000 5000
step

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Mamba

= 7e-06
= 1e-05
= 2e-05

central flows

Figure 34(b): RMSProp: central flow predictions for loss curves (CE). Similar to Figure 34(a) but for cross-entropy
loss.

91

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4

train loss

0 2000 4000 6000 8000
step

0

200

400

600

sharpness
(max Hessian eigenvalue)

0 2000 4000 6000 8000
step

0.2

0.4

0.6

0.8

network output on
arbitrary test example

0 2000 4000 6000 8000
step

0.0

2.5

5.0

7.5

10.0

12.5
CN

N

2 = 0.9
2 = 0.99
2 = 0.999

central flows

Figure 36: Validating the Scalar RMSProp central flow across β2 values. We run both Scalar RMSProp and
its central flow at multiple values of the β2 hyperparameter (colors). Observe that the central flows (black) well-
approximate the trajectory of Scalar RMSProp. Details: a CNN is trained on a subset of CIFAR-10 with MSE loss,
η = 0.01, and bias correction.

0 1000 2000 3000
step

0.0

0.1

0.2

0.3

0.4

0.5
train loss

0 1000 2000 3000
step

0

100

200

300

400

sharpness
(max Hessian eigenvalue)

0 1000 2000 3000
step

0.2

0.4

0.6

network output on
arbitrary test example

0 1000 2000 3000
step

0.0

0.5

1.0

1.5

2.0
j

j

CN
N

/ M
SE 2 = 0.9

2 = 0.99
2 = 0.999

central flows

0 500 1000 1500 2000 2500
step

0.0

0.2

0.4

0.6
train loss

0 500 1000 1500 2000 2500
step

50

100

150

200

250

sharpness
(max Hessian eigenvalue)

0 500 1000 1500 2000 2500
step

0.0

0.2

0.4

0.6

network output on
arbitrary test example

0 500 1000 1500 2000 2500
step

0

2

4

6

j
j

Tr
an

sf
or

m
er

 /
M

SE

2 = 0.9
2 = 0.99
2 = 0.999

central flows

Figure 35: Validating the RMSProp central flow across β2 values. We run both RMSProp and its central flow
at multiple values of the β2 hyperparameter (colors). Observe that the central flows (black) well-approximate the
trajectories of RMSProp. Details: the top row is a CNN trained on a subset of CIFAR-10 with MSE loss, η = 2e-5,
ϵ = 1e-8, and bias correction. The bottom row is a Transformer trained on a synthetic sequence prediction task with
MSE loss, η = 4e-5, ϵ = 1e-8, and bias correction.

92

0 1000 2000 3000
step

0.0

0.1

0.2

0.3

0.4

0.5
train loss

0 1000 2000 3000
step

0

100

200

300

400

sharpness
(max Hessian eigenvalue)

0 1000 2000 3000
step

0.2

0.4

0.6

0.8

network output on
arbitrary test example

0 1000 2000 3000
step

0.0

0.5

1.0

1.5

2.0

2.5
j

j
CN

N
/ M

SE = 1e-06
= 1e-05
= 0.0001

central flows

0 500 1000 1500
step

0.0

0.2

0.4

0.6
train loss

0 500 1000 1500
step

50

100

150

sharpness
(max Hessian eigenvalue)

0 500 1000 1500
step

0.0

0.2

0.4

0.6

network output on
arbitrary test example

0 500 1000 1500
step

0.0

0.5

1.0

1.5
j

j

Tr
an

sf
or

m
er

 /
M

SE

= 1e-05
= 0.0001
= 0.001

central flows

Figure 37: Validating the RMSProp central flow across ϵ values. We run both RMSProp and its central flow
at multiple values of the ϵ hyperparameter (colors). Observe that the central flows (black) well-approximate the
trajectory of RMSProp. Details: the top row is a CNN trained on a subset of CIFAR-10 with MSE loss, η = 2e-5,
ϵ = 1e-8, and bias correction. The bottom row is a Transformer trained on a synthetic sequence prediction task with
MSE loss, η = 4e-5, ϵ =1e-8, and bias correction.

3000 3200 3400 3600 3800
step / time

0.0

0.5

1.0

1.5

2.0
train loss

3000 3200 3400 3600 3800
step / time

0

100

200

300

400

500
squared gradient norm

3000 3200 3400 3600 3800
step / time

100

150

200

250

300
top hessian eigenvalue

3000 3200 3400 3600 3800
step / time

0.2

0.3

0.4

0.5

0.6

distance between gradient
descent and central flow

gradient descent
central flow

Figure 39: Large spikes degrade the accuracy of the central flow approximation. Every few hundred iterations,
there is a large spike (visible in e.g. the loss and the gradient norm), which causes the distance between gradient
descent and the central flow to jump. For reasons we do not understand, such large spikes are relatively common
during full-batch training with cross-entropy loss, especially near the end of training. Details: a CNN is trained on a
subset of CIFAR-10 with cross-entropy loss, using gradient descent with η = 0.01.

93

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) -GeLU activation function
= 1.0
= 5.0
= 10.0
= 20.0

0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(b) weight-space distance
between w(t) and wt

= 1.0
= 5.0
= 10.0
= 20.0

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

0.5

tra
in

 lo
ss

= 1.0

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

0.5

tra
in

 lo
ss

= 5.0

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

0.5

tra
in

 lo
ss

= 10.0

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

0.5

tra
in

 lo
ss

= 20.0

0 1000 2000 3000 4000
step

0.2

0.0

0.2

0.4

0.6

ne
tw

or
k

ou
tp

ut
 o

n
te

st
 e

xa
m

pl
e

0 1000 2000 3000 4000
step

0.0

0.2

0.4

ne
tw

or
k

ou
tp

ut
 o

n
te

st
 e

xa
m

pl
e

0 1000 2000 3000 4000
step

0.0

0.1

0.2

0.3

ne
tw

or
k

ou
tp

ut
 o

n
te

st
 e

xa
m

pl
e

0 1000 2000 3000 4000
step

0.0

0.1

0.2

0.3
ne

tw
or

k
ou

tp
ut

 o
n

te
st

 e
xa

m
pl

e

(c) loss and network output on test example

Figure 38: Accuracy of central flow degrades as activation function becomes less smooth. We consider networks
with the β-GeLU activation function from Dauphin et al. (2024), defined as x 7→ xΦ(βx) where Φ is the standard
Gaussian CDF. This activation interpolates between (smooth) GeLU when β = 1 and (non-smooth) ReLU when
β =∞. Subfigure (a) plots this activation function with varying β. Subfigure (b) shows that when β is larger (i.e.
when the activation is less smooth), the approximation error between the central flow w(t) and the optimizer trajectory
wt grows faster. Subfigure (c) plots the loss curve, and the network’s output on a test example, for both the optimizer
trajectory and the central flow. Fortunately, even when β = 20, at which point β-GeLU is a very close approximation
to ReLU, the central flow accurately predicts the overall training loss curve.

94

0 500 1000 1500 2000 2500
step

0.05

0.10

0.15

0.20

0.25

train loss L(w(t))

0 500 1000 1500 2000 2500
step

200

400

600

sharpness S(w(t))

0 500 1000 1500 2000 2500
step

0.01

0.02

0.03

0.04

0.05

effective step size /

CN
N

2
=

0.
99

Scalar RMSProp, = 0.01
Scalar RMSProp, = 0.02
central flows
ablation w/o
curvature reg

0 200 400 600 800 1000
step

0.16

0.18

0.20

0.22

0.24
train loss L(w(t))

0 200 400 600 800 1000
step

80
100
120
140
160
180
200

sharpness S(w(t))

0 200 400 600 800 1000
step

0.010

0.015

0.020

0.025

effective step size /

Re
sN

et
2

=
0.

99

Scalar RMSProp, = 0.01
Scalar RMSProp, = 0.02
central flows
ablation w/o
curvature reg

0 500 1000 1500 2000 2500
step

0.20

0.22

0.24

0.26

0.28
train loss L(w(t))

0 500 1000 1500 2000 2500
step

200

400

600

sharpness S(w(t))

0 500 1000 1500 2000 2500
step

0.005

0.010

0.015

0.020

0.025

0.030
effective step size /

Vi
T

2
=

0.
99

Scalar RMSProp, = 0.03
Scalar RMSProp, = 0.05
central flows
ablation w/o
curvature reg

0 500 1000 1500 2000
step

0.06

0.08

0.10

0.12

0.14

0.16
train loss L(w(t))

0 500 1000 1500 2000
step

50

75

100

125

150

175

200
sharpness S(w(t))

0 500 1000 1500 2000
step

0.01

0.02

0.03

0.04

effective step size /

LS
TM

2
=

0.
99

Scalar RMSProp, = 0.02
Scalar RMSProp, = 0.04
central flows
ablation w/o
curvature reg

0 200 400 600 800 1000
step

0.20

0.22

0.24

0.26

0.28

train loss L(w(t))

0 200 400 600 800 1000
step

50

60

70

80

90

100

sharpness S(w(t))

0 200 400 600 800 1000
step

0.020

0.025

0.030

0.035

0.040

0.045

effective step size /

Tr
an

sf
or

m
er

2
=

0.
99

Scalar RMSProp, = 0.01
Scalar RMSProp, = 0.02
central flows
ablation w/o
curvature reg

0 200 400 600 800 1000
step

0.18

0.19

0.20

0.21
train loss L(w(t))

0 200 400 600 800 1000
step

200

400

600

800

1000

sharpness S(w(t))

0 200 400 600 800 1000
step

0.005

0.010

0.015

0.020

0.025

0.030
effective step size /

M
am

ba
2

=
0.

99

Scalar RMSProp, = 0.01
Scalar RMSProp, = 0.02
central flows
ablation w/o
curvature reg

Figure 40: Implicit curvature reduction accelerates optimization for Scalar RMSProp. Starting from the
same initialization, we run the Scalar RMSProp central flow at various learning rates, as well as an ablated flow
dw
dt = − 2

S(w)∇L(w) with curvature regularization removed. These three flows all use the same step size strategy but
differ in the strength of implicit curvature regularization. Initially, the flows with higher curvature regularization often
optimize slower; however, over the longer run, they are able to take larger steps and optimize faster. Each row depicts
a different deep learning setting. All experiments use MSE loss.64

64For discrete Scalar RMSProp, we show the train loss not at the iterates themselves but at the second-order midpoints between iterates
ŵt :=

1
4
[2wt+wt−1+wt+1], which removes most of the oscillations along the top eigenvectors. This makes the train loss directly comparable

to the flow losses.

95

0 200 400 600 800 1000
step

0.000

0.025

0.050

0.075

0.100

train loss L(w)

0 200 400 600 800 1000
step

50

100

150
sharpness S(w)

0 200 400 600 800 1000
step

0.0

0.1

0.2

harmonic mean of
effective step sizes 1/(i

i /)

CN
N

=
0.

00
01

,
2

=
0.

99

RMSProp
central flow
ablation w/o
curvature reg

0 200 400 600 800 1000 1200
step

0.0

0.1

0.2

train loss L(w)

0 200 400 600 800 1000 1200
step

200

400

600

800
sharpness S(w)

0 200 400 600 800 1000 1200
step

0.0

0.5

1.0

1.5

harmonic mean of
effective step sizes 1/(i

i /)

Re
sN

et
=

0.
00

02
,

2
=

0.
99

RMSProp
central flow
ablation w/o
curvature reg

0 500 1000 1500 2000 2500
step

0.0

0.1

0.2

0.3
train loss L(w)

0 500 1000 1500 2000 2500
step

0

500

1000

1500

sharpness S(w)

0 500 1000 1500 2000 2500
step

0.00

0.05

0.10

0.15

harmonic mean of
effective step sizes 1/(i

i /)

Vi
T

=
3e

-0
5,

2

=
0.

99

RMSProp
central flow
ablation w/o
curvature reg

0 500 1000 1500
step

0.00

0.05

0.10

0.15

train loss L(w)

0 500 1000 1500
step

0

500

1000

sharpness S(w)

0 500 1000 1500
step

0.0

0.2

0.4

harmonic mean of
effective step sizes 1/(i

i /)

LS
TM

=
0.

00
04

,
2

=
0.

99

RMSProp
central flow
ablation w/o
curvature reg

0 100 200 300 400 500
step

0.0

0.1

0.2

0.3
train loss L(w)

0 100 200 300 400 500
step

50

100

150

sharpness S(w)

0 100 200 300 400 500
step

0.0

0.2

0.4

0.6

harmonic mean of
effective step sizes 1/(i

i /)

Tr
an

sf
or

m
er

=
0.

00
03

,
2

=
0.

95

RMSProp
central flow
ablation w/o
curvature reg

0 500 1000 1500 2000
step

0.00

0.05

0.10

0.15

0.20

train loss L(w)

0 500 1000 1500 2000
step

0

2000

4000

sharpness S(w)

0 500 1000 1500 2000
step

0.000

0.025

0.050

0.075

0.100

harmonic mean of
effective step sizes 1/(i

i /)

M
am

ba
=

4e
-0

5,

2
=

0.
99

RMSProp
central flow
ablation w/o
curvature reg

Figure 41: Implicit curvature reduction accelerates optimization for RMSProp. We compare RMSProp (blue) and
its central flow (black) to an ablated flow (red) which leaves out the implicit curvature regularization, and maintains
stability purely by the effect of oscillations on ν. Over time, RMSProp and the central flow navigate to lower-curvature
regions (center), where they take larger steps (right), and optimize faster (left) than the ablated flow. Each row is
a different DL setting. The left column plots the train loss,65the middle column plots the sharpness, and the right
column plots the harmonic mean of the effective learning rates. These experiments all use MSE loss.

65For discrete RMSProp, we show the train loss not at the iterates themselves but at the second-order midpoints between iterates
ŵt := 1

4
[2wt + wt−1 + wt+1], which removes most of the oscillations along the top eigenvectors. This makes the train loss directly

comparable to the flow losses.

96

500 1000 1500 2000 2500
step

0.96

0.97

0.98

0.99

1.00

co
s(

(t)
,

(w
(t)

))

= 1e-05

0.99950
0.99975

500 1000 1500 2000 2500
step

0.80

0.85

0.90

0.95

1.00
= 2e-05

0.999

1.000

500 1000 1500 2000 2500
step

0.75
0.80
0.85
0.90
0.95
1.00

= 4e-05

0.999
1.000

CNN

1000 1500 2000 2500
step

0.95

0.96

0.97

0.98

0.99

1.00

co
s(

(t)
,

(w
(t)

))

= 2e-05

0.99925
0.99950
0.99975

500 1000 1500 2000 2500
step

0.80

0.85

0.90

0.95

1.00
= 4e-05

0.9975

1.0000

500 1000 1500 2000 2500
step

0.75
0.80
0.85
0.90
0.95
1.00

= 0.0001

0.997
0.998
0.999

ResNet

1000 1500 2000 2500 3000 3500
step

0.90

0.92

0.94

0.96

0.98

1.00

co
s(

(t)
,

(w
(t)

))

= 1e-05

0.9990
0.9995

1000 2000 3000
step

0.7

0.8

0.9

1.0
= 2e-05

0.998

1.000

1000 2000 3000
step

0.875

0.900

0.925

0.950

0.975

1.000
= 3e-05

0.99925
0.99950
0.99975

ViT

3000 4000 5000 6000 7000 8000
step

0.980

0.985

0.990

0.995

1.000

co
s(

(t)
,

(w
(t)

))

= 1e-05

0.999925
0.999950
0.999975

2000 3000 4000
step

0.94

0.96

0.98

1.00
= 2e-05

0.9997
0.9998
0.9999

2000 4000 6000 8000
step

0.90
0.92
0.94
0.96
0.98
1.00

= 4e-05

0.998

1.000

LSTM

500 1000 1500 2000 2500
step

0.9980

0.9985

0.9990

0.9995

1.0000

co
s(

(t)
,

(w
(t)

))

= 2e-05

500 1000 1500 2000 2500
step

0.992

0.994

0.996

0.998

1.000
= 4e-05

0.99990
0.99995

500 1000 1500 2000 2500
step

0.97

0.98

0.99

1.00
= 0.0001

0.99975

1.00000

Transformer

1000 2000 3000 4000
step

0.975

0.980

0.985

0.990

0.995

1.000

co
s(

(t)
,

(w
(t)

))

= 1e-05

0.9996
0.9998

1000 2000 3000 4000 5000
step

0.92

0.94

0.96

0.98

1.00
= 2e-05

0.9990
0.9995

0 1000 2000 3000 4000 5000
step

0.80

0.85

0.90

0.95

1.00
= 4e-05

0.9985
0.9990
0.9995

Mamba

Figure 42(a): The EMA ν reaches stationarity during training (MSE). While running the RMSProp central flow,
beginning at the time when training enters EOS, we monitor the cosine similarity between the EMA ν(t) and the
stationary EMA ν̄(w(t)). This cosine similarity rises to high values (nearly 1) during training, implying that ν(t)
reaches stationarity.

97

1000 1500 2000 2500
step

0.99975

0.99980

0.99985

0.99990

0.99995

1.00000

co
s(

(t)
,

(w
(t)

))

= 7e-06

500 1000 1500 2000 2500
step

0.9995
0.9996
0.9997
0.9998
0.9999
1.0000

= 1e-05

500 1000 1500 2000 2500
step

0.996

0.997

0.998

0.999

1.000
= 2e-05

0.99995

1.00000

CNN

1500 2000 2500 3000 3500
step

0.9997

0.9998

0.9999

1.0000

co
s(

(t)
,

(w
(t)

))

= 1e-05

1000 2000 3000
step

0.9985

0.9990

0.9995

1.0000
= 2e-05

0.99998
0.99999

1000 2000 3000
step

0.996

0.997

0.998

0.999

1.000
= 4e-05

0.99995

1.00000

ResNet

1000 1500 2000 2500 3000 3500
step

0.97

0.98

0.99

1.00

co
s(

(t)
,

(w
(t)

))

= 5e-06

0.9997
0.9998

1000 1500 2000 2500 3000 3500
step

0.980

0.985

0.990

0.995

1.000
= 7e-06

0.9997
0.9998
0.9999

1000 2000 3000
step

0.975

0.980

0.985

0.990

0.995

1.000
= 1e-05

0.9996

0.9998

ViT

3500 3750 4000 4250 4500 4750
step

0.99996

0.99997

0.99998

0.99999

1.00000

co
s(

(t)
,

(w
(t)

))

= 1e-05

2000 2500 3000 3500 4000 4500
step

0.99985

0.99990

0.99995

1.00000
= 2e-05

0.9999985
0.9999990
0.9999995

1000 2000 3000 4000 5000
step

0.9990
0.9992
0.9994
0.9996
0.9998
1.0000

= 6e-05

0.99999

1.00000

LSTM

1000 1500 2000
step

0.99992

0.99994

0.99996

0.99998

1.00000

co
s(

(t)
,

(w
(t)

))

= 1e-05

500 1000 1500 2000 2500
step

0.9997

0.9998

0.9999

1.0000
= 2e-05

500 1000 1500 2000 2500
step

0.9990
0.9992
0.9994
0.9996
0.9998
1.0000

= 4e-05

Transformer

1000 2000 3000 4000 5000
step

0.99980

0.99985

0.99990

0.99995

1.00000

co
s(

(t)
,

(w
(t)

))

= 7e-06

1000 2000 3000 4000 5000
step

0.99975
0.99980
0.99985
0.99990
0.99995
1.00000

= 1e-05

0.999995
0.999996
0.999997

1000 2000 3000 4000 5000
step

0.9995

0.9996

0.9997

0.9998

0.9999

1.0000
= 2e-05

0.999991
0.999992

Mamba

Figure 42(b): The EMA ν reaches stationarity during training (cross-entropy). This figure is analogous to
Figure 42(a) but for cross-entropy loss.

98

500 1000 1500 2000 2500
step

10 10

10 9

10 8

10 7

10 6

10 5
= 1e-05

500 1000 1500 2000 2500
step

10 10

10 8

10 6

= 2e-05

500 1000 1500 2000 2500
step

10 9

10 7

10 5

= 4e-05

CNN

(t)i

(w(t))i

1000 1500 2000 2500
step

10 12

10 10

10 8

10 6

10 4

= 2e-05

500 1000 1500 2000 2500
step

10 12

10 9

10 6

10 3

= 4e-05

500 1000 1500 2000 2500
step

10 12

10 10

10 8

10 6

10 4

10 2
= 0.0001

ResNet

(t)i

(w(t))i

1000 1500 2000 2500 3000 3500
step

10 8

10 6

10 4

en
tri

es
 o

f

= 1e-05

1000 2000 3000
step

10 9

10 7

10 5

10 3

= 2e-05

1000 2000 3000
step

10 8

10 6

10 4

= 3e-05

ViT

(t)i

(w(t))i

3000 4000 5000 6000 7000 8000
step

10 10

10 8

10 6

10 4
= 1e-05

2000 3000 4000
step

10 9

10 7

10 5

= 2e-05

2000 4000 6000 8000
step

10 8

10 6

10 4

= 4e-05

LSTM

(t)i

(w(t))i

500 1000 1500 2000 2500
step

10 10

10 9

10 8

10 7

10 6

10 5
= 2e-05

500 1000 1500 2000 2500
step

10 9

10 7

10 5

= 4e-05

500 1000 1500 2000 2500
step

10 10

10 8

10 6

10 4
= 0.0001

Transformer

(t)i

(w(t))i

1000 2000 3000 4000
step

10 18

10 14

10 10

10 6

10 2
= 1e-05

1000 2000 3000 4000 5000
step

10 17

10 13

10 9

10 5

10 1
= 2e-05

0 1000 2000 3000 4000 5000
step

10 19

10 15

10 11

10 7

10 3

= 4e-05

Mamba

(t)i

(w(t))i

Figure 43(a): Stationary EMA is accurate at a coordinate-wise level (MSE). While running the RMSProp central
flow, starting at the time when training enters EOS, we plot the evolution of ten coordinates of the actual EMA ν(t)
(dots) and the stationary EMA ν(w(t)) (half-black dashed lines). Each color is a different coordinate, and the ten
coordinates are uniformly spaced throughout the network. We can see that, starting soon after training reaches EOS,
the stationary EMA ν(w(t)) becomes an excellent approximation to the real EMA ν(t), on a coordinatewise level.
We can also see that both the real EMA and the stationary EMA evolve significantly (in tandem) during this time.

99

1000 1500 2000 2500
step

10 10

10 8

10 6

10 4
= 7e-06

500 1000 1500 2000 2500
step

10 10

10 8

10 6

10 4
= 1e-05

500 1000 1500 2000 2500
step

10 9

10 7

10 5

= 2e-05

CNN

(t)i

(w(t))i

1500 2000 2500 3000 3500
step

10 15

10 12

10 9

10 6

10 3
= 1e-05

1000 2000 3000
step

10 13

10 11

10 9

10 7

10 5

10 3

= 2e-05

1000 2000 3000
step

10 12

10 10

10 8

10 6

10 4

10 2
= 4e-05

ResNet

(t)i

(w(t))i

1000 1500 2000 2500 3000 3500
step

10 8

10 6

10 4

en
tri

es
 o

f

= 5e-06

1000 1500 2000 2500 3000 3500
step

10 8

10 6

10 4

10 2
= 7e-06

1000 2000 3000
step

10 7

10 5

10 3

= 1e-05

ViT

(t)i

(w(t))i

3500 3750 4000 4250 4500 4750
step

10 11

10 9

10 7

10 5
= 1e-05

2000 2500 3000 3500 4000 4500
step

10 9

10 7

10 5

10 3
= 2e-05

1000 2000 3000 4000 5000
step

10 9

10 7

10 5

10 3

= 6e-05

LSTM

(t)i

(w(t))i

1000 1500 2000
step

10 11

10 10

10 9

10 8

10 7

= 1e-05

500 1000 1500 2000 2500
step

10 9

10 8

10 7

10 6

10 5

= 2e-05

500 1000 1500 2000 2500
step

10 9
10 8
10 7

10 6
10 5
10 4

= 4e-05

Transformer

(t)i

(w(t))i

1000 2000 3000 4000 5000
step

10 19

10 15

10 11

10 7

10 3

= 7e-06

1000 2000 3000 4000 5000
step

10 20

10 15

10 10

10 5

100
= 1e-05

1000 2000 3000 4000 5000
step

10 19

10 15

10 11

10 7

10 3

101
= 2e-05

Mamba

(t)i

(w(t))i

Figure 43(b): Stationary EMA is accurate at a coordinate-wise level (CE). Analogous to Figure 43(a), but for
cross-entropy loss.

100

500 1000 1500 2000 2500 3000
step

0.9996

0.9997

0.9998

0.9999

1.0000

co
s(

(t)
,

(w
(t)

))

2 = 0.9

0.999995

1.000000

500 1000 1500 2000 2500 3000
step

0.80

0.85

0.90

0.95

1.00
2 = 0.99

0.998

1.000

500 1000 1500 2000 2500 3000
step

0.4

0.5

0.6

0.7

0.8

0.9

1.0
2 = 0.999

0.996

0.998

500 1000 1500 2000 2500 3000
step

10 10

10 9

10 8

10 7

10 6

10 5

en
tri

es
 o

f

500 1000 1500 2000 2500 3000
step

10 10

10 9

10 8

10 7

10 6

10 5

500 1000 1500 2000 2500 3000
step

10 10

10 9

10 8

10 7

10 6

10 5

CNN

(t)i

(w(t))i

Figure 44: Assessing how β2 impacts the convergence of ν to stationarity. For multiple values of β2 (columns),
we monitor the closeness between ν(t) and the stationary value ν(w(t)) over time. In particular, the top row reports
the cosine similarity between these two vectors, and the bottom row compares ten individual coordinates (colors).
As one might expect, we see that when β2 is smaller, ν(t) converges faster to ν(w(t)) and the ultimate similarity is
higher. Conversely, when β2 is at the highest value of 0.999, some of the coordinates are noticeably off (e.g. the teal,
brown, and orange coordinates.) Details: a CNN is trained on a subset of CIFAR-10 using MSE loss at η = 2e-5,
β2 ∈ {0.9, 0.99, 0.999}, ϵ =1e-8, and bias correction.

101

500 1000 1500 2000 2500
steps

10 5

10 4

10 3

L(
w

)
2 P

1

= 1e-05

500 1000 1500 2000 2500
steps

10 5

10 4

10 3

= 2e-05

500 1000 1500 2000 2500
steps

10 5

10 4

10 3

= 4e-05

CNN

stationary
preconditioner
w/o second term

1000 1500 2000 2500
steps

10 4

10 3

L(
w

)
2 P

1

= 2e-05

500 1000 1500 2000 2500
steps

10 4

10 3

= 4e-05

500 1000 1500 2000 2500
steps

10 4

10 3

= 0.0001

ResNet

stationary
preconditioner
w/o second term

1500 2000 2500 3000 3500
steps

10 4

10 3

L(
w

)
2 P

1

= 7e-06

1000 1500 2000 2500 3000 3500
steps

10 4

10 3

= 1e-05

1000 2000 3000
steps

10 4

10 3

= 2e-05

ViT

stationary
preconditioner
w/o second term

3000 4000 5000 6000 7000 8000
steps

10 5

10 4

10 3

10 2

L(
w

)
2 P

1

= 1e-05

2000 3000 4000
steps

10 5

10 4

10 3

10 2
= 2e-05

2000 4000 6000 8000
steps

10 5

10 4

10 3

10 2
= 4e-05

LSTM

stationary
preconditioner
w/o second term

500 1000 1500 2000 2500
steps

10 4

10 3

10 2

L(
w

)
2 P

1

= 2e-05

500 1000 1500 2000 2500
steps

10 4

10 3

10 2

= 4e-05

500 1000 1500 2000 2500
steps

10 4

10 3

10 2

= 0.0001

Transformer

stationary
preconditioner
w/o second term

1000 2000 3000 4000
steps

10 4

10 3

10 2

L(
w

)
2 P

1

= 1e-05

1000 2000 3000 4000 5000
steps

10 4

10 3

10 2

= 2e-05

0 1000 2000 3000 4000 5000
steps

10 4

10 3

10 2

= 4e-05

Mamba

stationary
preconditioner
w/o second term

Figure 45(a): RMSProp stationary preconditioner is suboptimal (MSE). We compare the RMSProp stationary
preconditioner, defined as the solution to the optimization problem eq. (35), to an alternative preconditioner defined as
the solution to eq. (36), a similar optimization problem but without the second term in the objective. We assess each
preconditioner P by reporting ∥∇L(w)∥2P−1, the instantaneous rate of decrease in the loss under the preconditioned
gradient flow with preconditioner P . Observe that this value is higher under the alternative preconditioner (orange)
than under the RMSProp stationary preconditioner (blue), meaning that the alternative preconditioner would decrease
the loss faster. The gap between the two preconditioners tends to be smaller when η is larger, which is reasonable
because the second term in eq. (35) is proportional to 1

η2
.

102

1000 1500 2000 2500
steps

10 5

10 4

10 3

10 2

L(
w

)
2 P

1

= 7e-06

500 1000 1500 2000 2500
steps

10 5

10 4

10 3

10 2

= 1e-05

500 1000 1500 2000 2500
steps

10 5

10 4

10 3

10 2

= 2e-05

CNN

stationary
preconditioner
w/o second term

1500 2000 2500 3000 3500
steps

10 5

10 4

10 3

10 2

L(
w

)
2 P

1

= 1e-05

1000 2000 3000
steps

10 5

10 4

10 3

10 2

= 2e-05

1000 2000 3000
steps

10 5

10 4

10 3

10 2

= 4e-05

ResNet

stationary
preconditioner
w/o second term

1500 2000 2500 3000 3500
steps

10 3

10 2

10 1

L(
w

)
2 P

1

= 5e-06

1000 1500 2000 2500 3000 3500
steps

10 3

10 2

10 1
= 7e-06

1000 2000 3000
steps

10 3

10 2

10 1
= 1e-05

ViT

stationary
preconditioner
w/o second term

3500 3750 4000 4250 4500 4750
steps

10 5

10 4

10 3

10 2

10 1

L(
w

)
2 P

1

= 1e-05

2000 2500 3000 3500 4000 4500
steps

10 5

10 4

10 3

10 2

10 1
= 2e-05

1000 2000 3000 4000 5000
steps

10 5

10 4

10 3

10 2

10 1
= 6e-05

LSTM

stationary
preconditioner
w/o second term

1000 1500 2000
steps

10 3

10 2

10 1

L(
w

)
2 P

1

= 1e-05

500 1000 1500 2000 2500
steps

10 3

10 2

10 1

= 2e-05

500 1000 1500 2000 2500
steps

10 3

10 2

10 1

= 4e-05

Transformer

stationary
preconditioner
w/o second term

1000 2000 3000 4000 5000
steps

10 4

10 3

10 2

10 1

L(
w

)
2 P

1

= 7e-06

1000 2000 3000 4000 5000
steps

10 4

10 3

10 2

10 1

= 1e-05

1000 2000 3000 4000 5000
steps

10 4

10 3

10 2

10 1

= 2e-05

Mamba

stationary
preconditioner
w/o second term

Figure 45(b): RMSProp stationary preconditioner is suboptimal (CE). This figure is analogous to Figure 45(a),
but for cross-entropy loss.

103

500 1000 1500 2000 2500
steps

10 5

10 4

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 1e-05

500 1000 1500 2000 2500
steps

10 5

10 4

= 2e-05

500 1000 1500 2000 2500
steps

10 5

10 4

= 4e-05

CNN

real
estimate w/
curvature reg
estimate w/o
curvature reg

1000 1500 2000 2500
steps

10 5

10 4

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 2e-05

500 1000 1500 2000 2500
steps

10 5

10 4

= 4e-05

500 1000 1500 2000 2500
steps

10 5

10 4

= 0.0001

ResNet

real
estimate w/
curvature reg
estimate w/o
curvature reg

1500 2000 2500 3000 3500
steps

10 4

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 7e-06

1000 2000 3000
steps

10 4

= 1e-05

1000 2000 3000
steps

10 4

= 2e-05

ViT

real
estimate w/
curvature reg
estimate w/o
curvature reg

3000 4000 5000 6000 7000 8000
steps

10 5

10 4

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 1e-05

2000 3000 4000
steps

10 5

10 4

= 2e-05

2000 4000 6000 8000
steps

10 5

10 4

= 4e-05

LSTM

real
estimate w/
curvature reg
estimate w/o
curvature reg

500 1000 1500 2000 2500
steps

10 5

10 4

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 2e-05

500 1000 1500 2000 2500
steps

10 5

10 4

= 4e-05

500 1000 1500 2000 2500
steps

10 5

10 4

= 0.0001

Transformer

real
estimate w/
curvature reg
estimate w/o
curvature reg

3000 4000 5000 6000 7000 8000
steps

10 5

10 4

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 1e-05

2000 3000 4000
steps

10 5

10 4

= 2e-05

2000 4000 6000 8000
steps

10 5

10 4

= 4e-05

LSTM

real
estimate w/
curvature reg
estimate w/o
curvature reg

Figure 46(a): Stationary flow accurately predicts the instantaneous speed of optimization (MSE). The stationary
flow eq. (37), which incorporates an implicit curvature regularizer, predicts (black) the rate of loss decrease −dL

dt
(blue) more accurately than a naive estimate ∥∇L(w)∥2

P
−1

(w)
(in red) which uses the stationary preconditioner but

does not incorporate curvature regularization. Observe that the gap between the two estimates is larger when η is
larger, suggesting that, like Scalar RMSProp, the implicit regularization of RMSProp increases in strength with η.

104

1000 1500 2000 2500
steps

10 5

10 4

10 3

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 7e-06

500 1000 1500 2000 2500
steps

10 5

10 4

10 3

= 1e-05

500 1000 1500 2000 2500
steps

10 5

10 4

10 3

= 2e-05

CNN

real
estimate w/
curvature reg
estimate w/o
curvature reg

1500 2000 2500 3000 3500
steps

10 5

10 4

10 3

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 1e-05

1000 2000 3000
steps

10 5

10 4

10 3
= 2e-05

1000 2000 3000
steps

10 5

10 4

10 3
= 4e-05

ResNet

real
estimate w/
curvature reg
estimate w/o
curvature reg

1000 2000 3000
steps

10 4

10 3

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 7e-06

1000 2000 3000
steps

10 4

10 3

= 1e-05

1000 2000 3000
steps

10 4

10 3

= 2e-05

ViT

real
estimate w/
curvature reg
estimate w/o
curvature reg

3500 4000 4500
steps

10 5

10 4

10 3

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 1e-05

2000 3000 4000
steps

10 5

10 4

10 3

= 2e-05

1000 2000 3000 4000 5000
steps

10 5

10 4

10 3

= 6e-05

LSTM

real
estimate w/
curvature reg
estimate w/o
curvature reg

1000 1500 2000
steps

10 3

3 × 10 4

4 × 10 4

6 × 10 4

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 1e-05

500 1000 1500 2000 2500
steps

10 3

3 × 10 4

4 × 10 4

6 × 10 4

= 2e-05

500 1000 1500 2000 2500
steps

10 3

3 × 10 4

4 × 10 4

6 × 10 4

= 4e-05

Transformer

real
estimate w/
curvature reg
estimate w/o
curvature reg

3500 4000 4500
steps

10 5

10 4

10 3

ra
te

 o
f l

os
s

de
cr

ea
se

 -d
L/

dt

= 1e-05

2000 3000 4000
steps

10 5

10 4

10 3

= 2e-05

1000 2000 3000 4000 5000
steps

10 5

10 4

10 3

= 6e-05

LSTM

real
estimate w/
curvature reg
estimate w/o
curvature reg

Figure 46(b): Stationary flow accurately predicts the instantaneous speed of optimization (CE). Same as
Figure 46(a), but with cross-entropy loss.

105

2000 2050 2100 2150 2200 2250
step

0.01

0.02

0.03

0.04

train loss

2000 2050 2100 2150 2200 2250
step

1.8

2.0

2.2

2.4
top 3 effective Hessian eigenvalues

2000 2050 2100 2150 2200 2250
step

180

190

200

top Hessian eigenvalue

2000 2050 2100 2150 2200 2250
step

1.25

1.50

1.75

2.00

2.25
j

j

2000 2050 2100 2150 2200 2250
step

0.10

0.15

0.20

network output on
arbitrary test example

2000 2050 2100 2150 2200 2250
step

0.00

0.05

0.10

0.15

0.20
weight-space distance to RMSProp

RMSProp
central flow
stationary flow
fully-adaptive flow

Figure 47(a): Stationary flow can be accurate over moderate timescales. Starting at a point during training when ν
has reached stationarity, we run the stationary flow eq. (37) (in green) alongside both RMSProp (in blue) and the
central flow (in black). As a baseline, we also run an ablated version of the stationary flow (in red) which adapts using
the stationary ν but does not implicitly regularize curvature. Observe that the stationary flow accurately tracks the
central flow (and, in turn, RMSProp), whereas the baseline is a worse approximation. This experiment uses a CNN
trained on a subset of CIFAR-10 using MSE loss with hyperparameters η = 4e-05, β2 = 0.99, and ϵ =1e-8.

2000 2050 2100 2150 2200 2250
step

0.01

0.02

0.03

0.04

train loss

2000 2050 2100 2150 2200 2250
step

1.8

2.0

2.2

2.4
top 3 effective Hessian eigenvalues

2000 2050 2100 2150 2200 2250
step

180

190

200

top Hessian eigenvalue

2000 2050 2100 2150 2200 2250
step

1.25

1.50

1.75

2.00

2.25
j

j

2000 2050 2100 2150 2200 2250
step

0.10

0.15

0.20

network output on
arbitrary test example

2000 2050 2100 2150 2200 2250
step

0.00

0.05

0.10

0.15

0.20
weight-space distance to RMSProp

RMSProp
central flow
stationary flow
fully-adaptive flow

Figure 47(b): Stationary flow can be accurate over moderate timescales. Same as Figure 47(a), but using a
Transformer trained on a synthetic sequence task using MSE loss with hyperparameters η = 1e-4, β2 = 0.95, and
ϵ =1e-8.

106

E Bulk Experimental Data

This section contains the bulk experimental data from our central flow experiments:

• Appendix E.1 contains gradient descent experiments. See Figure 48 for a fully annotated example of a gradient
descent trajectory.

• Appendix E.2 contains Scalar RMSProp experiments. See Figure 51 for a fully annotated example of a Scalar
RMSProp trajectory.

• Appendix E.3 contains RMSProp experiments. See Figure 54 for a fully annotated example of a RMSProp
trajectory.

107

E.1 Gradient Descent

0 1000 2000 3000 4000 5000 6000
step

0.15

0.20

0.25

0.30

0.35

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

250

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40

45

50

55

60

65
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.50

0.25

0.00

0.25

0.50

0.75

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example 2

gradient descent
central flow

Figure 48: Annotated example of a gradient descent experiment. Using gradient descent with η = 2/200, we train a ViT on
a subset of CIFAR-10. The central flow (black) accurately models the trajectory of gradient descent (blue), whereas gradient
flow (red) takes a different path. As described in Appendix B.1, we terminate gradient flow once the sharpness gets too high.
Top left: The loss along the central flow (solid black) decreases monotonically, whereas the loss along the gradient descent
trajectory (light blue) behaves non-monotonically once the dynamics enter EOS. While the gradient descent loss is higher than
the central flow loss, the central flow can accurately predict the time-averaged loss along the gradient descent trajectory, using
eq. (73) (dashed black); this can be seen to match the empirical time average of the gradient descent loss curve (dark blue).
Finally, the train loss along gradient flow (in red) decreases faster, because it follows a different, unregularized path.
Top center: We plot the top three Hessian eigenvalues under gradient descent (colors) and under the central flow (black). Under
GD, the top Hessian eigenvalues equilibrate around 2/η; under the central flow they are fixed exactly at 2/η. In red, we plot the
top Hessian eigenvalue under the gradient flow, which rises beyond 2/η. Note that for GD, we report the Hessian eigenvalues at
the second-order midpoints (see Appendix B.1), rather than at the iterates themselves, as this makes for clearer plots.
Top right: We show that the central flow’s Σ(t) accurately predicts the covariance of the oscillations. In black, we plot the
nonzero eigenvalues of Σ(t); the number is always the same as the number of Hessian eigenvalues at 2/η. In faint colors, we
plot the squared magnitude of the displacement between gradient descent and the central flow along each eigenvector of Σ(t).
In thick colors, we plot the time-averages of these displacements, i.e. the empirical variance of the oscillations along each
eigenvector of Σ(t). Observe that the eigenvalues of Σ(t) accurately predict the instantaneous variance of the oscillations along
the corresponding eigenvectors, as we expect from eq. (76).
Middle left: We plot the squared gradient norm along the gradient descent trajectory (light blue) and its empirical time-average
(dark blue). In dashed black, we plot the central flow’s prediction eq. (74) for the time-averaged squared gradient norm along the
trajectory; this prediction is quite accurate. In solid black, we plot the squared gradient norm along the central flow, which is
much smaller, indicating that that most of the gradient norm comes from the oscillations.
Middle center: We plot the test accuracy under gradient descent (blue) and the central flow (black). For gradient descent, we
report the test accuracy at second-order midpoints, as this removes much of the oscillations. Because the central flow matches
the gradient descent trajectory, the test accuracy is nearly the same across both trajectories.
Middle right: The Euclidean distance in weight space between gradient descent and the central flow (black) stays small over
time, indicating that these two trajectories stay close. By contrast, the distance between gradient descent and the gradient flow
(red) grows rapidly once the dynamics enter EOS.
Bottom row: We show the network’s final-layer predictions on three arbitrary examples. Under gradient descent (colors) these
predictions oscillate due to the oscillations in weight space. Under the central flow (black), the predictions evolve smoothly
while still following the same macroscopic path.

108

0 1000 2000 3000 4000
step

0.1

0.2

0.3

0.4

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

100

200

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0

2

4

6

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

2

4

6

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

30

40

50

60

test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000
step

0.25

0.00

0.25

0.50

0.75

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

0.5

0.0

0.5

1.0

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example 2

gradient descent
central flow

Figure 49.1: Gradient descent central flow for a CNN with MSE loss, η = 0.005.

0 1000 2000 3000 4000
step

0.0

0.1

0.2

0.3

0.4

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

50

100

150

200

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0

2

4

6

8

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

1

2

3

4

5
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

30

40

50

60

test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.00

0.25

0.50

0.75

1.00

1.25

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000
step

0.25

0.00

0.25

0.50

0.75

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

0.5

0.0

0.5

1.0
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example 2

gradient descent
central flow

Figure 49.2: Gradient descent central flow for a CNN with MSE loss, η = 0.006666.

109

0 1000 2000 3000 4000
step

0.0

0.1

0.2

0.3

0.4

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

25

50

75

100

125

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

1

2

3

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

30

40

50

60

test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000
step

0.5

0.0

0.5

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

0.5

0.0

0.5

1.0

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000
step

0.2

0.0

0.2

0.4

0.6

0.8

network outputs on test example 2
gradient descent
central flow

Figure 49.3: Gradient descent central flow for a CNN with MSE loss, η = 0.01.

0 1000 2000 3000 4000
step

0.10

0.15

0.20

0.25

0.30

0.35
train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

100

200

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

45

50

55

60

65

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.1

0.2

0.3

0.4
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000
step

0.1

0.2

0.3

0.4

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

0.25

0.00

0.25

0.50

0.75

1.00
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

network outputs on test example 2
gradient descent
central flow

Figure 49.4: Gradient descent central flow for a ResNet with MSE loss, η = 0.01.

110

0 1000 2000 3000 4000
step

0.1

0.2

0.3

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

50

100

150

200

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0

1

2

3

4

5
1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

45

50

55

60

65

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000
step

0.1

0.2

0.3

0.4

0.5

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

0.0

0.5

1.0
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

network outputs on test example 2
gradient descent
central flow

Figure 49.5: Gradient descent central flow for a ResNet with MSE loss, η = 0.013333.

0 1000 2000 3000 4000
step

0.1

0.2

0.3

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

50

100

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0

2

4

6

8

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

50

55

60

65

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000
step

0.2

0.0

0.2

0.4

0.6

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

0.5

0.0

0.5

1.0
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000
step

0.2

0.0

0.2

0.4

0.6

0.8

network outputs on test example 2
gradient descent
central flow

Figure 49.6: Gradient descent central flow for a ResNet with MSE loss, η = 0.02.

111

0 1000 2000 3000 4000 5000 6000
step

0.15

0.20

0.25

0.30

0.35

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

250

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40

45

50

55

60

65
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.50

0.25

0.00

0.25

0.50

0.75

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example 2

gradient descent
central flow

Figure 49.7: Gradient descent central flow for a ViT with MSE loss, η = 0.01.

0 1000 2000 3000 4000 5000 6000
step

0.15

0.20

0.25

0.30

0.35
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

45

50

55

60

65
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.4

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.25

0.00

0.25

0.50

0.75

1.00
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example 2

gradient descent
central flow

Figure 49.8: Gradient descent central flow for a ViT with MSE loss, η = 0.013333.

112

0 1000 2000 3000 4000 5000 6000
step

0.2

0.4

0.6

0.8
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

25

50

75

100

125

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.0000

0.0001

0.0002

0.0003

0.0004
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4

5
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

45

50

55

60

65

test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.5

0.0

0.5

1.0

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.50
0.25
0.00
0.25
0.50
0.75
1.00

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.50

0.25

0.00

0.25

0.50

0.75

network outputs on test example 2
gradient descent
central flow

Figure 49.9: Gradient descent central flow for a ViT with MSE loss, η = 0.02.

0 1000 2000 3000 4000 5000 6000
step

0.1

0.2

0.3

0.4
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

20

40

60

80

100

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40

60

80

test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

0.8

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.25

0.00

0.25

0.50

0.75

1.00

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

network outputs on test example 2
gradient descent
central flow

Figure 49.10: Gradient descent central flow for a LSTM with MSE loss, η = 0.01333.

113

0 1000 2000 3000 4000 5000 6000
step

0.1

0.2

0.3

0.4
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

20

40

60

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40

60

80

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.25

0.00

0.25

0.50

0.75

1.00

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.25

0.00

0.25

0.50

0.75

1.00

1.25
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example 2

gradient descent
central flow

Figure 49.11: Gradient descent central flow for a LSTM with MSE loss, η = 0.02.

0 1000 2000 3000 4000 5000 6000
step

0.0

0.1

0.2

0.3

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

10

20

30

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40
50
60
70
80
90

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.25
0.00
0.25
0.50
0.75
1.00

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.25

0.00

0.25

0.50

0.75

1.00
network outputs on test example 2

gradient descent
central flow

Figure 49.12: Gradient descent central flow for a LSTM with MSE loss, η = 0.04.

114

0 1000 2000 3000 4000 5000 6000
step

0.1

0.2

0.3

0.4

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8
1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40

60

80

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.1

0.2

0.3

0.4

0.5

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.1

0.0

0.1

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.05

0.00

0.05

0.10

0.15
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.1

0.0

0.1

0.2
network outputs on test example 2

gradient descent
central flow

Figure 49.13: Gradient descent central flow for a Transformer with MSE loss, η = 0.01.

0 1000 2000 3000 4000 5000 6000
step

0.1

0.2

0.3

0.4

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

20

40

60

80

100

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40
50
60
70
80
90

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.1

0.0

0.1

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.10

0.05

0.00

0.05

0.10

0.15
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.1

0.0

0.1

0.2
network outputs on test example 2

gradient descent
central flow

Figure 49.14: Gradient descent central flow for a Transformer with MSE loss, η = 0.013333.

115

0 1000 2000 3000 4000 5000 6000
step

0.0

0.1

0.2

0.3

0.4

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

20

40

60

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40
50
60
70
80
90

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.00
0.25
0.50
0.75
1.00
1.25
1.50

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.1

0.0

0.1

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.1

0.0

0.1

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.1

0.0

0.1

0.2

network outputs on test example 2
gradient descent
central flow

Figure 49.15: Gradient descent central flow for a Transformer with MSE loss, η = 0.02.

0 1000 2000 3000 4000 5000 6000
step

0.20

0.25

0.30

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

200

400

600
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8
1e 6
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

58

60

62

64

66

68
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.1

0.2

0.3

0.4

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

network outputs on test example 2
gradient descent
central flow

Figure 49.16: Gradient descent central flow for a Mamba with MSE loss, η = 0.01.

116

0 1000 2000 3000 4000 5000 6000
step

0.150

0.175

0.200

0.225

0.250

0.275
train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

100

200

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0
1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

58

60

62

64

66

68
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.1

0.2

0.3

0.4

0.5

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

network outputs on test example 2
gradient descent
central flow

Figure 49.17: Gradient descent central flow for a Mamba with MSE loss, η = 0.013333.

0 1000 2000 3000 4000 5000 6000
step

0.10

0.15

0.20

0.25

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

60.0

62.5

65.0

67.5

70.0
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.1

0.2

0.3

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.25

0.00

0.25

0.50

0.75

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

network outputs on test example 2
gradient descent
central flow

Figure 49.18: Gradient descent central flow for a Mamba with MSE loss, η = 0.02.

117

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

100

200

300

400

500

600
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00005

0.00010

0.00015

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

10

20

30

40

50

60
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

30

40

50

60

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

10
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

10
network outputs on test example 2

gradient descent
central flow

Figure 50.1: Gradient descent central flow for a CNN with CE loss, η = 0.005.

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

100

200

300

400

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

10

20

30

40

50
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

30

40

50

60

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

20

10

0

10

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

20

15

10

5

0

5

10
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

15

10

5

0

5

10

network outputs on test example 2
gradient descent
central flow

Figure 50.2: Gradient descent central flow for a CNN with CE loss, η = 0.006666.

118

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4

5
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

250

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.0000

0.0001

0.0002

0.0003

0.0004
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

10

20

30

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

30

40

50

60

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

20

15

10

5

0

5

10
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

15

10

5

0

5

10

15
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

15

10

5

0

5

10

network outputs on test example 2
gradient descent
central flow

Figure 50.3: Gradient descent central flow for a CNN with CE loss, η = 0.01.

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

250

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

45

50

55

60

65

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

6

4

2

0

2

4
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

10

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

5.0

2.5

0.0

2.5

5.0

7.5
network outputs on test example 2

gradient descent
central flow

Figure 50.4: Gradient descent central flow for a ResNet with CE loss, η = 0.01.

119

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.000000
0.000025
0.000050
0.000075
0.000100
0.000125
0.000150

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

45

50

55

60

65

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

6

4

2

0

2

4
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

10

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

5

0

5

network outputs on test example 2
gradient descent
central flow

Figure 50.5: Gradient descent central flow for a ResNet with CE loss, η = 0.013333.

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

25

50

75

100

125

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.0000

0.0001

0.0002

0.0003

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4

5

6
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

45

50

55

60

65

70
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

6

4

2

0

2

4
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

10

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

7.5

5.0

2.5

0.0

2.5

5.0

7.5
network outputs on test example 2

gradient descent
central flow

Figure 50.6: Gradient descent central flow for a ResNet with CE loss, η = 0.02.

120

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

50

100

150

200

250

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.0000

0.0001

0.0002

0.0003

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

10

20

30

40
gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

40

45

50

55

60

65
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8

1.0
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000
step

6

4

2

0

2

4

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

6

4

2

0

2

4

6
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000
step

4

2

0

2

4

network outputs on test example 2
gradient descent
central flow

Figure 50.7: Gradient descent central flow for a ViT with CE loss, η = 0.01.

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

50

100

150

200

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0
5

10
15
20
25
30

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

40

45

50

55

60

65
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8

1.0
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000
step

6

4

2

0

2

4

6
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000
step

7.5

5.0

2.5

0.0

2.5

5.0

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000
step

4

2

0

2

4

network outputs on test example 2
gradient descent
central flow

Figure 50.8: Gradient descent central flow for a ViT with CE loss, η = 0.013333.

121

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

2.5
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

25

50

75

100

125

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.0000

0.0002

0.0004

0.0006

0.0008
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

5

10

15

20

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

45

50

55

60

65
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8

1.0
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000
step

6

4

2

0

2

4

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

6
4
2
0
2
4
6

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000
step

6

4

2

0

2

4

network outputs on test example 2
gradient descent
central flow

Figure 50.9: Gradient descent central flow for a ViT with CE loss, η = 0.02.

0 1000 2000 3000 4000 5000 6000
step

0.2

0.4

0.6

0.8

1.0

1.2

1.4
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

30
40
50
60
70
80
90

test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

4

2

0

2

4

6
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

2

0

2

4

6
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

6

4

2

0

2

network outputs on test example 2
gradient descent
central flow

Figure 50.10: Gradient descent central flow for a LSTM with CE loss, η = 0.01333.

122

0 1000 2000 3000 4000 5000 6000
step

0.00

0.25

0.50

0.75

1.00

1.25

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

25

50

75

100

125

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.0000

0.0002

0.0004

0.0006

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40

60

80

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

5.0

2.5

0.0

2.5

5.0

7.5

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

4

2

0

2

4

6

8
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

6

4

2

0

2

4

network outputs on test example 2
gradient descent
central flow

Figure 50.11: Gradient descent central flow for a LSTM with CE loss, η = 0.02.

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

20

40

60

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.0000

0.0005

0.0010

0.0015

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4

5

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

40

60

80

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

5

0

5

10
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

5.0
2.5
0.0
2.5
5.0
7.5

10.0
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

5.0

2.5

0.0

2.5

5.0

7.5
network outputs on test example 2

gradient descent
central flow

Figure 50.12: Gradient descent central flow for a LSTM with CE loss, η = 0.04.

123

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

2.5
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

50

100

150

200

250

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.00000

0.00005

0.00010

0.00015

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

2

4

6

8

10

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

20

40

60

80

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000
step

4

2

0

2

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

4

3

2

1

0

1

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000
step

2

1

0

1

2
network outputs on test example 2

gradient descent
central flow

Figure 50.13: Gradient descent central flow for a Transformer with CE loss, η = 0.01.

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

2.5
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

50

100

150

200

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

2

4

6

8

10

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

20

40

60

80

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000
step

4

2

0

2

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

4
3
2
1
0
1

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000
step

3

2

1

0

1

2
network outputs on test example 2

gradient descent
central flow

Figure 50.14: Gradient descent central flow for a Transformer with CE loss, η = 0.013333.

124

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

2.5
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

25

50

75

100

125

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

2

4

6

8

10

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

20

40

60

80

100
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000
step

3
2
1
0
1
2

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000
step

4

2

0

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000
step

3

2

1

0

1

2
network outputs on test example 2

gradient descent
central flow

Figure 50.15: Gradient descent central flow for a Transformer with CE loss, η = 0.02.

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

250

300
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000
0.00002
0.00004
0.00006
0.00008
0.00010
0.00012

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0
2
4
6
8

10
12

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

60

65

70

75

test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

7.5
5.0
2.5
0.0
2.5
5.0
7.5

network outputs on test example 0
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

5.0

2.5

0.0

2.5

5.0

7.5
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

5.0

2.5

0.0

2.5

5.0

7.5

network outputs on test example 2
gradient descent
central flow

Figure 50.16: Gradient descent central flow for a Mamba with CE loss, η = 0.01.

125

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0
train loss

gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00005

0.00010

0.00015

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8

10

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

60

65

70

75

80
test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2
distance to gradient descent

central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

5

0

5

10
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

network outputs on test example 1
gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

5

0

5

10
network outputs on test example 2

gradient descent
central flow

Figure 50.17: Gradient descent central flow for a Mamba with CE loss, η = 0.013333.

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

train loss
gradient descent
gradient descent (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

25

50

75

100

125

150
top Hessian eigenvalues

gradient descent
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8

gradient norm2

gradient descent
gradient descent (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

60

65

70

75

80

test accuracy (%)

gradient descent (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

distance to gradient descent
central flow
stable flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

10
network outputs on test example 0

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

10
network outputs on test example 1

gradient descent
central flow

0 1000 2000 3000 4000 5000 6000
step

10

5

0

5

10
network outputs on test example 2

gradient descent
central flow

Figure 50.18: Gradient descent central flow for a Mamba with CE loss, η = 0.02.

126

E.2 Scalar RMSProp

0 1000 2000 3000 4000 5000
step

0.20

0.25

0.30

0.35

0.40
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.0

0.5

1.0

1.5

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0

1

2

3

4

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

200

400

600

800

1000
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.01

0.02

0.03

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

58

60

62

64

66

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0.00

0.05

0.10

0.15

0.20

0.25
distance to Scalar RMSProp

central flow
stable flow

Figure 51: Annotated example of a Scalar RMSProp experiment. Using Scalar RMSProp with η = 2/400,
β2 = 0.99, and bias correction, we train a Mamba network on a synthetic sequence prediction task with MSE loss.
The central flow (black) accurately models the long-term trajectory of Scalar RMSProp (blue), whereas the stable flow
(red) takes a different path. As described in Appendix B.1, we terminate the stable flow once the effective sharpness
gets too high.

Top left: See Figure 48 caption. The central flow’s prediction for the time-averaged loss is given by eq. (112).
Top center: We plot the top several eigenvalues of the effective Hessian η√

ν
H(w) under both Scalar RMSProp

(colors) and its central flow (dashed black). Under Scalar RMSProp, these eigenvalues equilibrate around the critical
threshold 2, whereas under the central flow they are fixed exactly at 2. We also plot the top eigenvalue under the
“stable flow” baseline (red), and this increases far above 2.
Top right: See Figure 48 caption. This plot is validating eq. (114).
Middle left: See Figure 48 caption. The central flow’s prediction for the time-average is given by eq. (113).
Middle center: We plot the top several eigenvalues of the “raw” Hessian H(w), under both Scalar RMSProp (colors)
and the central flow (dashed black). These evolve throughout training, even as top eigenvalues of the effective Hessian
are equilibrating at the critical threshold (top center). In red, we plot the top Hessian eigenvalue under the stable flow.
Middle right: We plot the effective step size η/

√
ν under both Scalar RMSProp (blue) and the central flow (dashed

black). This effective step size oscillates under Scalar RMSProp, but varies smoothly under the central flow.
Bottom left: We show the network’s final-layer predictions on an arbitrary example. Under Scalar RMSProp
(colors) these predictions oscillate due to the oscillations in weight space. Under the central flow (dashed black), the
predictions evolve smoothly while following the same macroscopic path.
Bottom center: See Figure 48 caption.
Bottom right: See Figure 48 caption.

127

0 2000 4000 6000 8000
step

0.1

0.2

0.3

0.4

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0

0.2

0.4

0.6

0.8

1.0

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0

2

4

6

8

10
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

500

1000

1500

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.00

0.01

0.02

0.03

0.04

effective step size /
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.2

0.0

0.2

0.4

0.6

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

30

40

50

60

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.00

0.25

0.50

0.75

1.00

1.25

distance to Scalar RMSProp
central flow
stable flow

Figure 52.1: Scalar RMSProp central flow for a CNN with MSE loss, η = 0.003, β2 = 0.99, and bias correction.

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0

1

2

3

4

5
1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0.0

2.5

5.0

7.5

10.0

12.5
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

200

400

600

800

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.00

0.02

0.04

0.06

effective step size /
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.2

0.0

0.2

0.4

0.6

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

30

40

50

60

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.00

0.25

0.50

0.75

1.00

1.25
distance to Scalar RMSProp

central flow
stable flow

Figure 52.2: Scalar RMSProp central flow for a CNN with MSE loss, η = 0.006, β2 = 0.99, and bias correction.

128

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.00000

0.00005

0.00010

0.00015

0.00020
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0

1

2

3

4

5
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

50

100

150

200

250

300
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.025

0.050

0.075

0.100

0.125

effective step size /
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.50

0.25

0.00

0.25

0.50

0.75

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

50

60

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.0

0.2

0.4

0.6

0.8

1.0
distance to Scalar RMSProp

central flow
stable flow

Figure 52.3: Scalar RMSProp central flow for a CNN with MSE loss, η = 0.01, β2 = 0.99, and bias correction.

0 500 1000 1500 2000 2500 3000
step

0.1

0.2

0.3

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.00

0.25

0.50

0.75

1.00

1.25

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
step

0.0

0.5

1.0

1.5

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
step

0

100

200

300

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.010

0.015

0.020

0.025

effective step size /
Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

0.0

0.1

0.2

0.3

0.4

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

45

50

55

60

65

70
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
step

0.0

0.5

1.0

1.5

distance to Scalar RMSProp
central flow
stable flow

Figure 52.4: Scalar RMSProp central flow for a ResNet with MSE loss, η = 0.01, β2 = 0.99, and bias correction.

129

0 500 1000 1500 2000 2500 3000
step

0.10

0.15

0.20

0.25

0.30

0.35

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0

1

2

3
1e 5

real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
step

0.0

0.5

1.0

1.5
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
step

0

50

100

150

200

250

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.010

0.015

0.020

0.025

0.030
effective step size /

Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

0.0

0.1

0.2

0.3

0.4

network outputs on test example
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

45

50

55

60

65

70
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
step

0.0

0.5

1.0

1.5
distance to Scalar RMSProp

central flow
stable flow

Figure 52.5: Scalar RMSProp central flow for a ResNet with MSE loss, η = 0.02, β2 = 0.99, and bias correction.

0 500 1000 1500 2000 2500 3000
step

0.10

0.15

0.20

0.25

0.30

0.35
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
step

0.0

0.5

1.0

1.5

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
step

0
25
50
75

100
125
150

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.02

0.03

0.04

0.05

effective step size /
Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

0.0

0.2

0.4

0.6
network outputs on test example

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

45

50

55

60

65

70
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
step

0.00

0.25

0.50

0.75

1.00

1.25

distance to Scalar RMSProp
central flow
stable flow

Figure 52.6: Scalar RMSProp central flow for a ResNet with MSE loss, η = 0.03, β2 = 0.99, and bias correction.

130

0 1000 2000 3000 4000 5000 6000
step

0.20

0.25

0.30

0.35

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.000

0.001

0.002

0.003

0.004

0.005

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0.0

2.5

5.0

7.5

10.0

12.5

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

0

200

400

600

800

1000
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.01

0.02

0.03

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

network outputs on test example
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

30

40

50

60

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

distance to Scalar RMSProp
central flow
stable flow

Figure 52.7: Scalar RMSProp central flow for a ViT with MSE loss, η = 0.01, β2 = 0.99, and bias correction.

0 1000 2000 3000 4000 5000 6000
step

0.15

0.20

0.25

0.30

0.35

0.40
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.000

0.002

0.004

0.006

0.008
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8

10

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

0

100

200

300

400

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.01

0.02

0.03

0.04
effective step size /

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

0.2

0.0

0.2

0.4

0.6

network outputs on test example
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

35

40

45

50

55

60

65
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.2

0.4

0.6

0.8

1.0

distance to Scalar RMSProp
central flow
stable flow

Figure 52.8: Scalar RMSProp central flow for a ViT with MSE loss, η = 0.02, β2 = 0.99, and bias correction.

131

0 1000 2000 3000 4000 5000
step

0.2

0.3

0.4

0.5
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.000

0.002

0.004

0.006

0.008

0.010

0.012
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0

2

4

6

8
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

50

100

150

200

250
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.01

0.02

0.03

0.04

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

0.50

0.25

0.00

0.25

0.50

0.75

1.00
network outputs on test example

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

40

45

50

55

60

65
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0.0

0.2

0.4

0.6

0.8

1.0

distance to Scalar RMSProp
central flow
stable flow

Figure 52.9: Scalar RMSProp central flow for a ViT with MSE loss, η = 0.03, β2 = 0.99, and bias correction.

0 2000 4000 6000 8000
step

0.1

0.2

0.3

0.4
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0

2

4

6

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0.0

0.5

1.0

1.5

2.0

2.5
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

100

200

300

400

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.00

0.05

0.10

0.15

0.20

0.25
effective step size /

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.4

0.2

0.0

0.2
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.0

0.5

1.0

1.5

2.0

distance to Scalar RMSProp
central flow
stable flow

Figure 52.10: Scalar RMSProp central flow for a LSTM with MSE loss, η = 0.01, β2 = 0.99, and bias correction.

132

0 2000 4000 6000 8000
step

0.1

0.2

0.3

0.4
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0.0

0.5

1.0

1.5

2.0

2.5
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

50

100

150

200

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4
effective step size /

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.4

0.2

0.0

0.2
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.00
0.25
0.50
0.75
1.00
1.25
1.50

distance to Scalar RMSProp
central flow
stable flow

Figure 52.11: Scalar RMSProp central flow for a LSTM with MSE loss, η = 0.02, β2 = 0.99, and bias correction.

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0000

0.0002

0.0004

0.0006

0.0008

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0.0

0.5

1.0

1.5

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

20

40

60

80

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0
0.1
0.2
0.3
0.4
0.5
0.6

effective step size /
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.4

0.2

0.0

0.2
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

50

60

70

80

90

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
distance to Scalar RMSProp

central flow
stable flow

Figure 52.12: Scalar RMSProp central flow for a LSTM with MSE loss, η = 0.03, β2 = 0.99, and bias correction.

133

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4

0.5
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0

2

4

6

8

1e 6
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0

1

2

3

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

100

200

300

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.01

0.02

0.03

0.04

effective step size /
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.4

0.2

0.0

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

20

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0

1

2

3

4

5
distance to Scalar RMSProp

central flow
stable flow

Figure 52.13: Scalar RMSProp central flow for a Transformer with MSE loss, η = 0.01, β2 = 0.99, and bias
correction.

0 2000 4000 6000 8000
step

0.1

0.2

0.3

0.4

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0

1

2

3

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0.0

0.2

0.4

0.6

0.8

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

50

100

150

200

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.01

0.02

0.03

0.04

0.05

0.06
effective step size /

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.4

0.2

0.0

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

20

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0

1

2

3

4
distance to Scalar RMSProp

central flow
stable flow

Figure 52.14: Scalar RMSProp central flow for a Transformer with MSE loss, η = 0.02, β2 = 0.99, and bias
correction.

134

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0.0

0.2

0.4

0.6

0.8
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

20

40

60

80

100

120
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.02

0.04

0.06

0.08

effective step size /
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

0.4

0.3

0.2

0.1

0.0

0.1
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.0

0.5

1.0

1.5

2.0

2.5

3.0
distance to Scalar RMSProp

central flow
stable flow

Figure 52.15: Scalar RMSProp central flow for a Transformer with MSE loss, η = 0.03, β2 = 0.99, and bias
correction.

0 1000 2000 3000 4000 5000
step

0.20

0.25

0.30

0.35

0.40
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.0

0.5

1.0

1.5

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0

1

2

3

4

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

200

400

600

800

1000
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.01

0.02

0.03

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

58

60

62

64

66

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0.00

0.05

0.10

0.15

0.20

0.25
distance to Scalar RMSProp

central flow
stable flow

Figure 52.16: Scalar RMSProp central flow for a Mamba with MSE loss, η = 0.007, β2 = 0.99, and bias correction.

135

0 1000 2000 3000 4000 5000
step

0.15

0.20

0.25

0.30

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0

2

4

6 1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0.0

0.5

1.0

1.5

2.0

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

100

200

300

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.01

0.02

0.03

0.04

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

0.2

0.0

0.2

0.4

0.6

0.8
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

58

60

62

64

66

68
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0.00

0.05

0.10

0.15

0.20

distance to Scalar RMSProp
central flow
stable flow

Figure 52.17: Scalar RMSProp central flow for a Mamba with MSE loss, η = 0.01, β2 = 0.99, and bias correction.

0 1000 2000 3000 4000 5000
step

0.10

0.15

0.20

0.25

0.30

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.00000

0.00005

0.00010

0.00015

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0.00

0.25

0.50

0.75

1.00

1.25

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

25

50

75

100

125

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.02

0.03

0.04

0.05

0.06

0.07

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

0.2

0.0

0.2

0.4

0.6

0.8

network outputs on test example
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

58
60
62
64
66
68
70

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0.0

0.1

0.2

0.3

0.4

0.5

distance to Scalar RMSProp
central flow
stable flow

Figure 52.18: Scalar RMSProp central flow for a Mamba with MSE loss, η = 0.02, β2 = 0.99, and bias correction.

136

0 1000 2000 3000 4000 5000
step

0.0

0.5

1.0

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.0

0.5

1.0

1.5

2.0
1e 6
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0.0

0.2

0.4

0.6

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

200

400

600

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.00

0.02

0.04

0.06

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

10

5

0

5

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

50

60

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

distance to Scalar RMSProp
central flow
stable flow

Figure 53.1: Scalar RMSProp central flow for a CNN with CE loss, η = 0.003, β2 = 0.99, and bias correction.

0 1000 2000 3000 4000 5000
step

0.0

0.5

1.0

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.0

0.2

0.4

0.6

0.8

1.0

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0.0

0.5

1.0

1.5

2.0

2.5
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

200

400

600

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.000

0.025

0.050

0.075

0.100

0.125

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

10

5

0

5

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

50

60

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4

distance to Scalar RMSProp
central flow
stable flow

Figure 53.2: Scalar RMSProp central flow for a CNN with CE loss, η = 0.006, β2 = 0.99, and bias correction.

137

0 1000 2000 3000 4000 5000
step

0.0

0.5

1.0

1.5

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0

1

2

3

4

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0

1

2

3

4

5

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

200

400

600

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.0

0.1

0.2

0.3

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

15

10

5

0

5

10

network outputs on test example
Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

50

60

test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4

5

distance to Scalar RMSProp
central flow
stable flow

Figure 53.3: Scalar RMSProp central flow for a CNN with CE loss, η = 0.01, β2 = 0.99, and bias correction.

0 500 1000 1500 2000 2500 3000
step

0.4

0.6

0.8

1.0

1.2

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0

2

4

6

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
step

0

1

2

3

4

5

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
step

0

200

400

600
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.01

0.02

0.03

0.04

effective step size /
Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

2

1

0

1

network outputs on test example
Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

45

50

55

60

65

70
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
step

0.0

0.5

1.0

1.5

distance to Scalar RMSProp
central flow
stable flow

Figure 53.4: Scalar RMSProp central flow for a ResNet with CE loss, η = 0.01, β2 = 0.99, and bias correction.

138

0 500 1000 1500 2000 2500 3000
step

0.2

0.4

0.6

0.8

1.0

1.2

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.00000

0.00005

0.00010

0.00015

0.00020
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
step

0
1
2
3
4
5
6

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
step

0

100

200

300

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.02

0.04

0.06

0.08

effective step size /
Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

3

2

1

0

1

2

3
network outputs on test example

Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

45

50

55

60

65

70
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
distance to Scalar RMSProp

central flow
stable flow

Figure 53.5: Scalar RMSProp central flow for a ResNet with CE loss, η = 0.02, β2 = 0.99, and bias correction.

0 500 1000 1500 2000 2500 3000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.0000

0.0001

0.0002

0.0003

0.0004
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
step

0

1

2

3

4

5

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
step

0

50

100

150

200

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
step

0.025

0.050

0.075

0.100

0.125

0.150
effective step size /

Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

4

2

0

2

4
network outputs on test example

Scalar RMSProp
central flow

0 500 1000 1500 2000 2500 3000
step

50

55

60

65

70
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
step

0.0
0.2
0.4
0.6
0.8
1.0
1.2

distance to Scalar RMSProp
central flow
stable flow

Figure 53.6: Scalar RMSProp central flow for a ResNet with CE loss, η = 0.03, β2 = 0.99, and bias correction.

139

0 1000 2000 3000 4000
step

0.4

0.6

0.8

1.0

1.2

1.4
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.000

0.005

0.010

0.015

0.020

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

50

100

150

200

250
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

0

1000

2000

3000

4000
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.00

0.02

0.04

0.06

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000
step

3

2

1

0

1

2

3
network outputs on test example

Scalar RMSProp
central flow

0 1000 2000 3000 4000
step

40

45

50

55

60

65
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8
distance to Scalar RMSProp

central flow
stable flow

Figure 53.7: Scalar RMSProp central flow for a ViT with CE loss, η = 0.01, β2 = 0.99, and bias correction.

0 1000 2000 3000 4000
step

0.2

0.4

0.6

0.8

1.0

1.2

1.4
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.000
0.005
0.010
0.015
0.020
0.025
0.030

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

25

50

75

100

125

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

0
250
500
750

1000
1250
1500

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.00

0.02

0.04

0.06

0.08

0.10

0.12
effective step size /

Scalar RMSProp
central flow

0 1000 2000 3000 4000
step

4

2

0

2

4

network outputs on test example
Scalar RMSProp
central flow

0 1000 2000 3000 4000
step

45

50

55

60

65
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

distance to Scalar RMSProp
central flow
stable flow

Figure 53.8: Scalar RMSProp central flow for a ViT with CE loss, η = 0.02, β2 = 0.99, and bias correction.

140

0 1000 2000 3000 4000
step

0.0

0.5

1.0

1.5

2.0

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.00

0.01

0.02

0.03

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
step

0

20

40

60

80
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
step

0

200

400

600

800
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
step

0.00

0.05

0.10

0.15

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000
step

6

4

2

0

2

4

6
network outputs on test example

Scalar RMSProp
central flow

0 1000 2000 3000 4000
step

45

50

55

60

65
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000
step

0.0

0.2

0.4

0.6

0.8
distance to Scalar RMSProp

central flow
stable flow

Figure 53.9: Scalar RMSProp central flow for a ViT with CE loss, η = 0.03, β2 = 0.99, and bias correction.

0 2000 4000 6000 8000
step

0.25

0.50

0.75

1.00

1.25

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0

2

4

6

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0

5

10

15

20

25
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

250

500

750

1000

1250

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0

0.1

0.2

0.3

0.4
effective step size /

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

6

4

2

0
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.0

0.5

1.0

1.5
distance to Scalar RMSProp

central flow
stable flow

Figure 53.10: Scalar RMSProp central flow for a LSTM with CE loss, η = 0.01, β2 = 0.99, and bias correction.

141

0 2000 4000 6000 8000
step

0.00

0.25

0.50

0.75

1.00

1.25

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0000

0.0001

0.0002

0.0003

0.0004

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0

5

10

15

20

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

100

200

300

400

500

600

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0

0.2

0.4

0.6

0.8
effective step size /

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

5

4

3

2

1

0
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40
50
60
70
80
90

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.00

0.25

0.50

0.75

1.00

1.25

distance to Scalar RMSProp
central flow
stable flow

Figure 53.11: Scalar RMSProp central flow for a LSTM with CE loss, η = 0.02, β2 = 0.99, and bias correction.

0 2000 4000 6000 8000
step

0.00

0.25

0.50

0.75

1.00

1.25

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 2000 4000 6000 8000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 2000 4000 6000 8000
step

0.0
2.5
5.0
7.5

10.0
12.5
15.0

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 2000 4000 6000 8000
step

0

100

200

300

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000
step

0.0

0.2

0.4

0.6

0.8

1.0

1.2
effective step size /

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

5

4

3

2

1

0
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

50

60

70

80

90

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 2000 4000 6000 8000
step

0.0
0.2
0.4
0.6
0.8
1.0
1.2

distance to Scalar RMSProp
central flow
stable flow

Figure 53.12: Scalar RMSProp central flow for a LSTM with CE loss, η = 0.03, β2 = 0.99, and bias correction.

142

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3
1e 5

real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

0

200

400

600

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.000

0.025

0.050

0.075

0.100

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

5

4

3

2

1

0
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

20

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6
distance to Scalar RMSProp

central flow
stable flow

Figure 53.13: Scalar RMSProp central flow for a Transformer with CE loss, η = 0.01, β2 = 0.99, and bias correction.

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5
train loss

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

0

100

200

300

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00

0.05

0.10

0.15

0.20
effective step size /

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

6

5

4

3

2

1

0
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4

5

distance to Scalar RMSProp
central flow
stable flow

Figure 53.14: Scalar RMSProp central flow for a Transformer with CE loss, η = 0.02, β2 = 0.99, and bias correction.

143

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5

3.0
train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000 6000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000 6000
step

0

2

4

6

8
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000 6000
step

0

50

100

150

200

250
top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000 6000
step

0

20

40

60

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000 6000
step

6

4

2

0
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000
step

40

60

80

100
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000 6000
step

0.0

0.5

1.0

1.5

2.0

2.5

distance to Scalar RMSProp
central flow
stable flow

Figure 53.15: Scalar RMSProp central flow for a Transformer with CE loss, η = 0.03, β2 = 0.99, and bias correction.

0 1000 2000 3000 4000 5000
step

0.6

0.8

1.0

1.2

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0

1

2

3
1e 5

real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0

5

10

15

20

25
gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

500

1000

1500

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.005

0.010

0.015

effective step size /
Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

4

2

0

2
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

58

60

62

64

66

68
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0.00

0.05

0.10

0.15

0.20

0.25
distance to Scalar RMSProp

central flow
stable flow

Figure 53.16: Scalar RMSProp central flow for a Mamba with CE loss, η = 0.007, β2 = 0.99, and bias correction.

144

0 1000 2000 3000 4000 5000
step

0.6

0.8

1.0

1.2

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0

2

4

6
1e 5

real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0

5

10

15

20

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

250

500

750

1000

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.005

0.010

0.015

0.020

0.025
effective step size /

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

4

2

0

2
network outputs on test example

Scalar RMSProp
central flow

0 2000 4000 6000 8000
step

58

60

62

64

66

68
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0.00

0.05

0.10

0.15

0.20

0.25
distance to Scalar RMSProp

central flow
stable flow

Figure 53.17: Scalar RMSProp central flow for a Mamba with CE loss, η = 0.01, β2 = 0.99, and bias correction.

0 1000 2000 3000 4000 5000
step

0.4

0.6

0.8

1.0

train loss
Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
step

0

1

2

3

4
top effective hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.00000

0.00005

0.00010

0.00015

0.00020
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
step

0.0
2.5
5.0
7.5

10.0
12.5
15.0

gradient norm2

Scalar RMSProp
Scalar RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
step

0

100

200

300

400

500

top hessian eigenvalues

Scalar RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
step

0.01

0.02

0.03

0.04

0.05
effective step size /

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

4

2

0

2
network outputs on test example

Scalar RMSProp
central flow

0 1000 2000 3000 4000 5000
step

58

60

62

64

66

68

70
test accuracy (%)

Scalar RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
step

0.0

0.1

0.2

0.3

0.4

0.5
distance to Scalar RMSProp

central flow
stable flow

Figure 53.18: Scalar RMSProp central flow for a Mamba with CE loss, η = 0.02, β2 = 0.99, and bias correction.

145

E.3 RMSProp

0 500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

45

50

55

60

65

70
test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 17

10 14

10 11

10 8

10 5

coordinates of
RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

distance to RMSProp
central flow
stable flow

Figure 54: Annotated example of a RMSProp experiment. Using RMSProp with η = 2 × 10−5, β2 = 0.99,
ϵ = 10−8 and bias correction, we train a ResNet on a subset of CIFAR-10 with MSE loss. The central flow (black)
accurately models the long-term trajectory of RMSProp (blue), whereas the stable flow (red) takes a different path.
As described in Appendix B.1, we terminate the stable flow once the effective sharpness gets sufficiently large.

Top left: See Figure 48 caption. The central flow’s prediction for the time-averaged loss is given by eq. (120).
Top center: We plot the top several eigenvalues of the effective Hessian diag

[
η√
ν

]
H(w) under both RMSProp

(colors) and its central flow (dashed black). Under RMSProp, these eigenvalues equilibrate around the critical
threshold 2, whereas under the central flow they are fixed exactly at 2. We also plot the top eigenvalue under the
“stable flow” baseline (red), which increases far above 2.
Top right: We show that the central flow accurately predicts the covariance of the oscillations. In particular, we
show that each nonzero eigenvalue λi(t) of P (t)1/2Σ(t)P (t)1/2 accurately predicts the P -whitened variance of
oscillations along the corresponding eigenvector vi(t), as we expect from eq. (122). In black, we plot the nonzero
eigenvalues of P (t)1/2Σ(t)P (t)1/2. In faint colors, we plot the squared magnitude of the P -whitened displacement
between RMSProp and the central flow along each eigenvector vi(t) (see eq. (122)), and in thick colors, we plot the
time-averages of these displacements, i.e. the empirical variances of the oscillations. Observe that each eigenvalue
accurately predicts the variance of the oscillations along the corresponding eigenvector.
Middle left: See Figure 48 caption. The central flow’s prediction for the time-average is given by eq. (121).
Middle center: See Figure 51 caption. The central flow’s prediction for the time-averaged loss is given by eq. (120).
Middle right: See Figure 48 caption.
Bottom left: See Figure 51 caption.
Bottom center: We plot four arbitrary coordinates of the EMA ν under both RMSProp (colors) and the central flow
(dashed black). The coordinates of ν are oscillatory along the RMSProp trajectory, while varying smoothly along the
central flow.
Bottom right: See Figure 48 caption.

146

0 500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.0000

0.0001

0.0002

0.0003

0.0004
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500 3000
0.0

0.2

0.4

0.6

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
0.2

0.0

0.2

0.4

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 11

10 9

10 7

10 5
coordinates of

RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5

distance to RMSProp
central flow
stable flow

Figure 55.1: RMSProp central flow for a CNN with MSE loss, η = 1e-05, β2 = 0.99, ϵ = 1e-08, and bias correction.

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
0.4

0.2

0.0

0.2

0.4

0.6
network outputs on test example

RMSProp
central flow

0 500 1000 1500 2000 2500 3000
10 11

10 10

10 9

10 8

10 7

10 6

10 5

coordinates of
RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5
distance to RMSProp

central flow
stable flow

Figure 55.2: RMSProp central flow for a CNN with MSE loss, η = 2e-05, β2 = 0.99, ϵ = 1e-08, and bias correction.

147

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.0000

0.0005

0.0010

0.0015

0.0020

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000

0.4

0.2

0.0

0.2

0.4

0.6

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 10

10 9

10 8

10 7

10 6

10 5

10 4
coordinates of

RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5
distance to RMSProp

central flow
stable flow

Figure 55.3: RMSProp central flow for a CNN with MSE loss, η = 4e-05, β2 = 0.99, ϵ = 1e-08, and bias correction.

0 500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

0.5
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

45

50

55

60

65

70
test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 17

10 14

10 11

10 8

10 5

coordinates of
RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

distance to RMSProp
central flow
stable flow

Figure 55.4: RMSProp central flow for a ResNet with MSE loss, η = 2e-05, β2 = 0.99, ϵ = 1e-08, and bias correction.

148

0 500 1000 1500 2000 2500 3000

0.1

0.2

0.3

0.4

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

45

50

55

60

65

70

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4

0.5

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 15

10 12

10 9

10 6

10 3

coordinates of
RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6
distance to RMSProp

central flow
stable flow

Figure 55.5: RMSProp central flow for a ResNet with MSE loss, η = 4e-05, β2 = 0.99, ϵ = 1e-08, and bias correction.

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.000

0.001

0.002

0.003

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

45

50

55

60

65

70

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 14

10 12

10 10

10 8

10 6

10 4

10 2
coordinates of

RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0

2

4

6

8
distance to RMSProp

central flow
stable flow

Figure 55.6: RMSProp central flow for a ResNet with MSE loss, η = 0.0001, β2 = 0.99, ϵ = 1e-08, and bias
correction.

149

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0

10

20

30

40

50

60
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000

30

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000
0.4

0.2

0.0

0.2

0.4

0.6

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 9

10 7

10 5

10 3

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

distance to RMSProp
central flow
stable flow

Figure 55.7: RMSProp central flow for a ViT with MSE loss, η = 7e-06, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0

10

20

30

40

50
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

200

400

600

800

1000

1200
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000

30

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

0.2

0.0

0.2

0.4

0.6

0.8

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 9

10 7

10 5

10 3

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

distance to RMSProp
central flow
stable flow

Figure 55.8: RMSProp central flow for a ViT with MSE loss, η = 1e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

150

0 1000 2000 3000 4000
0.0

0.1

0.2

0.3

0.4

0.5

0.6
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0

10

20

30

40
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

200

400

600

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000

30

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000
0.25

0.00

0.25

0.50

0.75

1.00
network outputs on test example

RMSProp
central flow

0 1000 2000 3000 4000

10 9

10 7

10 5

10 3

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

distance to RMSProp
central flow
stable flow

Figure 55.9: RMSProp central flow for a ViT with MSE loss, η = 2e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0

1

2

3

4

5

1e 6
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

50

100

150

200

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000

40

60

80

100
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

0.3

0.2

0.1

0.0

0.1

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 10

10 9

10 8

10 7

10 6

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

1.2
distance to RMSProp

central flow
stable flow

Figure 55.10: RMSProp central flow for a LSTM with MSE loss, η = 1e-05, β2 = 0.99, ϵ = 1e-08, and bias
correction.

151

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.00000

0.00005

0.00010

0.00015

0.00020

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

250

500

750

1000

1250

1500

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000

40

60

80

100
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

0.3

0.2

0.1

0.0

0.1

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 10

10 9

10 8

10 7

10 6

10 5
coordinates of

RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

distance to RMSProp
central flow
stable flow

Figure 55.11: RMSProp central flow for a LSTM with MSE loss, η = 2e-05, β2 = 0.99, ϵ = 1e-08, and bias
correction.

0 1000 2000 3000 4000

0.1

0.2

0.3

0.4

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0

1

2

3

4

5

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

500

1000

1500

2000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 2000 4000 6000 8000

40

60

80

100
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

0.3

0.2

0.1

0.0

0.1

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 10

10 9

10 8

10 7

10 6

10 5

10 4
coordinates of

RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

distance to RMSProp
central flow
stable flow

Figure 55.12: RMSProp central flow for a LSTM with MSE loss, η = 4e-05, β2 = 0.99, ϵ = 1e-08, and bias
correction.

152

0 500 1000 1500 2000 2500
0.1

0.2

0.3

0.4

0.5

0.6
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500
0

2

4

6

8

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500

20

40

60

80

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500

0.2

0.1

0.0

0.1

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500

10 11

10 10

10 9

10 8

10 7

10 6

10 5

coordinates of
RMSProp
central flow

0 500 1000 1500 2000 2500
0.00

0.25

0.50

0.75

1.00

1.25

distance to RMSProp
central flow
stable flow

Figure 55.13: RMSProp central flow for a Transformer with MSE loss, η = 2e-05, β2 = 0.95, ϵ = 1e-08, and bias
correction.

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5

0.6
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 500 1000 1500 2000 2500
0

2

4

6

8

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500
0

100

200

300

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500

20

40

60

80

100
test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500

0.3

0.2

0.1

0.0

0.1

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500

10 10

10 8

10 6

10 4
coordinates of

RMSProp
central flow

0 500 1000 1500 2000 2500
0.00

0.25

0.50

0.75

1.00

1.25

1.50

distance to RMSProp
central flow
stable flow

Figure 55.14: RMSProp central flow for a Transformer with MSE loss, η = 4e-05, β2 = 0.95, ϵ = 1e-08, and bias
correction.

153

0 500 1000 1500 2000
0.0

0.1

0.2

0.3

0.4

0.5

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 500 1000 1500 2000
0

2

4

6

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000
0

50

100

150

200

250
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500

20

40

60

80

100
test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500

0.3

0.2

0.1

0.0

0.1

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500
10 10

10 9

10 8

10 7

10 6

10 5

10 4

coordinates of
RMSProp
central flow

0 500 1000 1500 2000
0

2

4

6

8
distance to RMSProp

central flow
stable flow

Figure 55.15: RMSProp central flow for a Transformer with MSE loss, η = 0.0001, β2 = 0.95, ϵ = 1e-08, and bias
correction.

0 1000 2000 3000 4000 5000
0.1

0.2

0.3

0.4

0.5
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000 5000
0

2

4

6

8

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

2000

4000

6000

8000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000

30

40

50

60

70
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000

0.0

0.1

0.2

0.3

0.4

0.5

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000 5000

10 12

10 10

10 8

10 6

10 4

10 2

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6
distance to RMSProp

central flow
stable flow

Figure 55.16: RMSProp central flow for a Mamba with MSE loss, η = 1e-05, β2 = 0.99, ϵ = 1e-08, and bias
correction.

154

0 1000 2000 3000 4000 5000

0.1

0.2

0.3

0.4

0.5
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.0000

0.0002

0.0004

0.0006

0.0008

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000 5000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
45

50

55

60

65

70

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000

0.0

0.2

0.4

0.6
network outputs on test example

RMSProp
central flow

0 1000 2000 3000 4000 5000

10 12

10 10

10 8

10 6

10 4

10 2

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

distance to RMSProp
central flow
stable flow

Figure 55.17: RMSProp central flow for a Mamba with MSE loss, η = 2e-05, β2 = 0.99, ϵ = 1e-08, and bias
correction.

0 1000 2000 3000 4000 5000

0.1

0.2

0.3

0.4

0.5
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.0000

0.0005

0.0010

0.0015

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000

50

60

70

80

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000

0.2

0.0

0.2

0.4

0.6

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000 5000

10 11

10 9

10 7

10 5

10 3

10 1
coordinates of

RMSProp
central flow

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8
distance to RMSProp

central flow
stable flow

Figure 55.18: RMSProp central flow for a Mamba with MSE loss, η = 4e-05, β2 = 0.99, ϵ = 1e-08, and bias
correction.

155

0 500 1000 1500 2000 2500 3000

0.25

0.50

0.75

1.00

1.25

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5
1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
0.000

0.025

0.050

0.075

0.100

0.125

0.150

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000

4

2

0

2

4
network outputs on test example

RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 10

10 8

10 6

10 4
coordinates of

RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5
distance to RMSProp

central flow
stable flow

Figure 56.1: RMSProp central flow for a CNN with CE loss, η = 7e-06, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 500 1000 1500 2000 2500 3000
0.00

0.25

0.50

0.75

1.00

1.25

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
0.00

0.05

0.10

0.15

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000

5.0

2.5

0.0

2.5

5.0

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 10

10 8

10 6

10 4
coordinates of

RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

distance to RMSProp
central flow
stable flow

Figure 56.2: RMSProp central flow for a CNN with CE loss, η = 1e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

156

0 500 1000 1500 2000 2500 3000
0.00

0.25

0.50

0.75

1.00

1.25

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000
0.0000

0.0002

0.0004

0.0006

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4

0.5
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500 3000

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500 3000
10

5

0

5

10
network outputs on test example

RMSProp
central flow

0 500 1000 1500 2000 2500 3000

10 10

10 8

10 6

10 4
coordinates of

RMSProp
central flow

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

distance to RMSProp
central flow
stable flow

Figure 56.3: RMSProp central flow for a CNN with CE loss, η = 2e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 1000 2000 3000 4000

0.6

0.8

1.0

1.2

1.4
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0

1

2

3

4
1e 5

real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

200

400

600

800

1000
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000

50

55

60

65

70
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

2

1

0

1

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 17

10 14

10 11

10 8

10 5

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

distance to RMSProp
central flow
stable flow

Figure 56.4: RMSProp central flow for a ResNet with CE loss, η = 1e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

157

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

1.2

1.4
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
0

1

2

3

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

3000
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
45

50

55

60

65

70
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

3

2

1

0

1

2

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 16

10 13

10 10

10 7

10 4

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

distance to RMSProp
central flow
stable flow

Figure 56.5: RMSProp central flow for a ResNet with CE loss, η = 2e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 1000 2000 3000 4000
0.00

0.25

0.50

0.75

1.00

1.25

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.0000

0.0005

0.0010

0.0015

0.0020

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000
0

2

4

6

8

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

500

1000

1500

2000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
45

50

55

60

65

70
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000
7.5

5.0

2.5

0.0

2.5

5.0

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 15

10 12

10 9

10 6

10 3

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0

1

2

3

distance to RMSProp
central flow
stable flow

Figure 56.6: RMSProp central flow for a ResNet with CE loss, η = 4e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

158

0 1000 2000 3000 4000

0.25

0.50

0.75

1.00

1.25

1.50
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012
real vs. predicted oscillation covariance

empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0.0

2.5

5.0

7.5

10.0

12.5

15.0
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

1000

2000

3000

4000

5000

6000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000

30

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

1

0

1

2
network outputs on test example

RMSProp
central flow

0 1000 2000 3000 4000

10 10

10 8

10 6

10 4

10 2
coordinates of

RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

distance to RMSProp
central flow
stable flow

Figure 56.7: RMSProp central flow for a ViT with CE loss, η = 5e-06, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 1000 2000 3000 4000
0.00

0.25

0.50

0.75

1.00

1.25

1.50
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.0000

0.0005

0.0010

0.0015

0.0020

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0

5

10

15

20

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

1000

2000

3000

4000

5000

6000
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000

30

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

2

1

0

1

2

3
network outputs on test example

RMSProp
central flow

0 1000 2000 3000 4000

10 10

10 8

10 6

10 4

10 2

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

1.2
distance to RMSProp

central flow
stable flow

Figure 56.8: RMSProp central flow for a ViT with CE loss, η = 7e-06, β2 = 0.95, ϵ = 1e-08, and bias correction.

159

0 1000 2000 3000 4000
0.00

0.25

0.50

0.75

1.00

1.25

1.50
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

real vs. predicted oscillation covariance
empirical variance
along each mode
predicted variances

0 1000 2000 3000 4000
0

10

20

30

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000
0

1000

2000

3000

4000

5000
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000

30

40

50

60

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000

2

0

2

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000

10 10

10 8

10 6

10 4

10 2

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

1.2
distance to RMSProp

central flow
stable flow

Figure 56.9: RMSProp central flow for a ViT with CE loss, η = 1e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 1000 2000 3000 4000 5000

0.6

0.8

1.0

1.2

1.4
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

1.5

2.0

2.5

3.0 1e 6
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

100

200

300

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000

30

40

50

60

70

80

90
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
1.50

1.25

1.00

0.75

0.50

0.25

0.00

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000 5000

10 10

10 9

10 8

10 7

10 6
coordinates of

RMSProp
central flow

0 1000 2000 3000 4000 5000
0.00

0.02

0.04

0.06

0.08
distance to RMSProp

central flow
stable flow

Figure 56.10: RMSProp central flow for a LSTM with CE loss, η = 1e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

160

0 1000 2000 3000 4000 5000

0.25

0.50

0.75

1.00

1.25

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.0000

0.0001

0.0002

0.0003

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

1.5

2.0

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

1000

2000

3000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000

40

60

80

100
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000

1.5

1.0

0.5

0.0

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000 5000
10 10

10 9

10 8

10 7

10 6

10 5

10 4
coordinates of

RMSProp
central flow

0 1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

distance to RMSProp
central flow
stable flow

Figure 56.11: RMSProp central flow for a LSTM with CE loss, η = 2e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 1000 2000 3000 4000 5000
0.00

0.25

0.50

0.75

1.00

1.25

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.000

0.001

0.002

0.003

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
0

5

10

15

20

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

1000

2000

3000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000

40

60

80

100
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000

1.5

1.0

0.5

0.0

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000 5000

10 8

10 6

10 4

10 2
coordinates of

RMSProp
central flow

0 1000 2000 3000 4000 5000
0.0

0.5

1.0

1.5

2.0

distance to RMSProp
central flow
stable flow

Figure 56.12: RMSProp central flow for a LSTM with CE loss, η = 6e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

161

0 500 1000 1500 2000 2500

1.9

2.0

2.1

2.2

2.3

2.4

2.5
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

1e 5
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500
0

20

40

60

80

100

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500

10

20

30

40

50

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500

0.6

0.4

0.2

0.0

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500

10 12

10 11

10 10

10 9

10 8

10 7

10 6
coordinates of

RMSProp
central flow

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

distance to RMSProp
central flow
stable flow

Figure 56.13: RMSProp central flow for a Transformer with CE loss, η = 1e-05, β2 = 0.95, ϵ = 1e-08, and bias
correction.

0 500 1000 1500 2000 2500

1.4

1.6

1.8

2.0

2.2

2.4

train loss
RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500
0.00000

0.00005

0.00010

0.00015

0.00020

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500
0

100

200

300

400

500

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500

20

40

60

80

test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500
1.0

0.8

0.6

0.4

0.2

0.0

0.2
network outputs on test example

RMSProp
central flow

0 500 1000 1500 2000 2500
10 12

10 11

10 10

10 9

10 8

10 7

10 6

coordinates of
RMSProp
central flow

0 500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

distance to RMSProp
central flow
stable flow

Figure 56.14: RMSProp central flow for a Transformer with CE loss, η = 2e-05, β2 = 0.95, ϵ = 1e-08, and bias
correction.

162

0 500 1000 1500 2000 2500
0.5

1.0

1.5

2.0

2.5
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 500 1000 1500 2000 2500
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 500 1000 1500 2000 2500
0

200

400

600

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 500 1000 1500 2000 2500

20

40

60

80

100
test accuracy (%)

RMSProp (midpoints)
central flow

0 500 1000 1500 2000 2500

1.5

1.0

0.5

0.0

network outputs on test example
RMSProp
central flow

0 500 1000 1500 2000 2500

10 11

10 9

10 7

10 5

coordinates of
RMSProp
central flow

0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

distance to RMSProp
central flow
stable flow

Figure 56.15: RMSProp central flow for a Transformer with CE loss, η = 4e-05, β2 = 0.95, ϵ = 1e-08, and bias
correction.

0 1000 2000 3000 4000 5000

0.6

0.8

1.0

1.2

1.4
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
0

5

10

15

20

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

5000

10000

15000

20000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000

30

40

50

60

70
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
0.75

0.50

0.25

0.00

0.25

0.50

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000 5000

10 10

10 8

10 6

10 4

10 2

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000 5000
0.00

0.02

0.04

0.06

0.08

0.10
distance to RMSProp

central flow
stable flow

Figure 56.16: RMSProp central flow for a Mamba with CE loss, η = 7e-06, β2 = 0.95, ϵ = 1e-08, and bias correction.

163

0 1000 2000 3000 4000 5000
0.4

0.6

0.8

1.0

1.2

1.4
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.0000

0.0005

0.0010

0.0015

real vs. predicted oscillation covariance
empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
0

25

50

75

100

125

gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

10000

20000

30000

40000
top hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
40

45

50

55

60

65

70
test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000

0.5

0.0

0.5

1.0

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000 5000

10 10

10 8

10 6

10 4

10 2

100
coordinates of

RMSProp
central flow

0 1000 2000 3000 4000 5000
0.00

0.05

0.10

0.15

0.20

distance to RMSProp
central flow
stable flow

Figure 56.17: RMSProp central flow for a Mamba with CE loss, η = 1e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

0 1000 2000 3000 4000 5000
0.2

0.4

0.6

0.8

1.0

1.2

1.4
train loss

RMSProp
RMSProp (average)
central flow
central flow prediction
stable flow

0 1000 2000 3000 4000 5000
0

1

2

3

4
top effective hessian eigenvalues

RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000
0.000

0.001

0.002

0.003

0.004

0.005
real vs. predicted oscillation covariance

empirical variance
along (t) eigenvectors
(t) eigenvalues

0 1000 2000 3000 4000 5000
0

100

200

300

400
gradient norm2

RMSProp
RMSProp (average)
central flow
central flow prediction

0 1000 2000 3000 4000 5000
0

5000

10000

15000

20000

25000

30000

top hessian eigenvalues
RMSProp
central flow
stable flow (top 1)

0 1000 2000 3000 4000 5000

50

55

60

65

70

test accuracy (%)

RMSProp (midpoints)
central flow

0 1000 2000 3000 4000 5000
1

0

1

2

3

network outputs on test example
RMSProp
central flow

0 1000 2000 3000 4000 5000

10 10

10 8

10 6

10 4

10 2

100

coordinates of
RMSProp
central flow

0 1000 2000 3000 4000 5000
0.0

0.1

0.2

0.3

0.4

0.5

distance to RMSProp
central flow
stable flow

Figure 56.18: RMSProp central flow for a Mamba with CE loss, η = 2e-05, β2 = 0.95, ϵ = 1e-08, and bias correction.

164

	Introduction
	Related Work
	Gradient Descent
	The Dynamics of Gradient Descent
	Deriving the Gradient Descent Central Flow
	Understanding Gradient Descent via its Central Flow

	Scalar RMSProp
	The Dynamics of Scalar RMSProp
	Deriving the Scalar RMSProp Central Flow
	Understanding Scalar RMSProp via its Central Flow

	RMSProp
	The Dynamics of RMSProp
	Deriving the RMSProp Central Flow
	Understanding RMSProp via its Central Flow

	Experiments
	Experimental Results

	Discussion
	Modeling decisions
	Takeaways from our analysis

	Conclusion
	Central Flow Derivations
	Preliminaries
	Gradient Descent
	Scalar RMSProp
	RMSProp
	General Class of Adaptive Preconditioned Methods
	Differential Complementarity Problems
	Continuous-time approximation to an EMA
	Miscellaneous math

	Experimental Details
	Implementation details
	Architecture details
	Dataset details

	Miscellaneous
	Implicit gradient regularization
	Failure mode: higher-order terms

	Supplementary Figures
	Bulk Experimental Data
	Gradient Descent
	Scalar RMSProp
	RMSProp

